Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030201    DOI: 10.1088/1674-1056/abc2ba
GENERAL   Next  

Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type

Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永)†
1 School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
Abstract  We propose a reverse-space nonlocal nonlinear self-dual network equation under special symmetry reduction, which may have potential applications in electric circuits. Nonlocal infinitely many conservation laws are constructed based on its Lax pair. Nonlocal discrete generalized (m, N-m)-fold Darboux transformation is extended and applied to solve this system. As an application of the method, we obtain multi-soliton solutions in zero seed background via the nonlocal discrete N-fold Darboux transformation and rational solutions from nonzero-seed background via the nonlocal discrete generalized (1, N-1)-fold Darboux transformation, respectively. By using the asymptotic and graphic analysis, structures of one-, two-, three-and four-soliton solutions are shown and discussed graphically. We find that single component field in this nonlocal system displays unstable soliton structure whereas the combined potential terms exhibit stable soliton structures. It is shown that the soliton structures are quite different between discrete local and nonlocal systems. Results given in this paper may be helpful for understanding the electrical signals propagation.
Keywords:  reverse-space nonlocal nonlinear self-dual network equation      nonlocal discrete generalized (mN-m)-fold Darboux transformation      multi-soliton solutions      rational solutions  
Published:  22 February 2021
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  04.60.Nc (Lattice and discrete methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12071042 and 61471406), the Beijing Natural Science Foundation, China (Grant No. 1202006), and Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP-B201704).
Corresponding Authors:  Corresponding author. E-mail: xiaoyongwen@163.com   

Cite this article: 

Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永) Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type 2021 Chin. Phys. B 30 030201

1 Wadati M 1976 Prog. Theor. Phys. Suppl. 59 36
2 Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366
3 Hirota R 1973 J. Phys. Soc. Jpn. 35 289
4 Toda M1989 Theory of Nonlinear Lattices (Berlin: Springer)
5 Ablowitz M J and Clarkson P A1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press)
6 Ankiewicz A, Akhmediev N and Soto-Crespo J M 2010 Phys. Rev. E 82 026602
7 Akhmediev N and Ankiewicz A 2011 Phys. Rev. E 83 046603
8 Ablowitz M J and Ladik J F 1975 J. Math. Phys. 16 598
9 Geng X G 1989 Acta. Math. Sci. 9 21
10 Geng X G and Dai H H 2007 J. Math. Anal. Appl. 327 829
11 Feng W and Zhao S L 2020 Appl. Math. Lett. 102 106093
12 Wen X Y 2012 J. Phys. Soc. Jpn. 81 114006
13 Zhou J, Zhang D J and Zhao S L 2009 Phys. Lett. A 373 3248
14 Qiu Y Y, He J S and Li M H 2019 Commun. Theor. Phys. 71 1
15 Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
16 Vishnu Priya N, Senthivelan M, Rangarajan G and Lakshmanan M 2019 Phys. Lett. A 383 15
17 Yang B and Yang J 2019 Lett. Math. Phys. 109 945
18 Yan Z 2015 Appl. Math. Lett. 47 61
19 Li M and Xu T 2015 Phys. Rev. E 91 033202
20 Li M, Xu T and Meng D 2016 J. Phys. Soc. Jpn. 85 124001
21 Wen X Y, Yan Z and Yang Y 2016 Chaos 26 063123
22 Ablowitz M J and Musslimani Z H 2017 Stud. Appl. Math. 139 7
23 Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912
24 Ji J L, Zhu Z N 2017 J. Math. Anal. Appl. 453 973
25 Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
26 Stalin S, Senthilvelan M and Lakshmanan M 2019 Nonlinear Dyn. 95 343
27 Liu X Z, Yu J, Lou Z M and Qian X M 2019 Chin. Phys. B 28 010201
28 Xu S Q and Geng X G 2018 Chin. Phys. B 27 120202
29 Hanif Y, Sarfraz H and Saleem U 2020 Nonlinear Dyn. 100 1559
30 Yu F J 2019 Appl. Math. Lett. 92 108
31 Li L, Yu F J and Duan C N 2020 Appl. Math. Lett. 110 106584
32 Yu F J and Fan R 2020 Appl. Math. Lett. 103 106209
33 Yu F J, Yu J and Li L 2020 Wave Motion 94 102500
34 Yu F J 2017 Chaos 27 023108
35 Wen X Y and Wang D S 2018 Wave Motion 79 84
36 Yuan C L, Wen X Y, Wang H T and Liu Y 2020 Chin. J. Phys. 64 45
37 Wen X Y and Wang H T 2020 Acta Phys. Sin. 69 010205 (in Chinese)
38 Hanif Y and Saleem U 2019 Nonlinear Dyn. 98 233
39 Ma L Y and Zhu Z N 2016 J. Math. Phys. 57 083507
40 Sarfraz H, Hanif Y and Saleem U 2020 Nonlinear Dyn. 99 2409
41 Xu T, Li H, Zhang H, Li M and Lan S 2017 Appl. Math. Lett. 63 88
42 Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese)
43 Lou S Y 2020 Acta Phys. Sin. 69 010503 (in Chinese)
44 Yuan F, He J S and Cheng Y 2019 Chin. Phys. B 28 100202
45 Wang M M and Chen Y 2019 Nonlinear Dyn. 98 1781
46 Xu T and Chen Y 2018 Commun. Nonlinear Sci. Numer. Simul. 57 276
47 Xu T and Chen Y 2016 Chin. Phys. B 25 090201
48 Xu T, Chen Y and Lin J 2017 Chin. Phys. B 26 120201
49 Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501
50 Song C Q and Zhu Z N 2020 Acta Phys. Sin. 69 010204 (in Chinese)
51 Du Z, Tian B, Qu Q X and Zhao X H 2020 Chin. Phys. B 29 030202
52 Zhang D and Chen D 2002 Chaos Soliton Fract. 14 573
[1] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[2] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
No Suggested Reading articles found!