Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128704    DOI: 10.1088/1674-1056/abc15f
RAPID COMMUNICATION Prev   Next  

Super-resolution filtered ghost imaging with compressed sensing

Shao-Ying Meng(孟少英)1, Wei-Wei Shi(史伟伟)1, Jie Ji(季杰)1, Jun-Jie Tao(陶俊杰)1, Qian Fu(付强)1, Xi-Hao Chen(陈希浩)1,†, and Ling-An Wu(吴令安)2
1 Key Laboratory of Optoelectronic Devices and Detection Technology, School of Physics, Liaoning University, Shenyang 110036, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A filtered ghost imaging (GI) protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system; a super-resolution reconstructed image is achieved by low-pass filtering of the measured intensities. In a lensless GI experiment performed with spatial bandpass filtering, the spatial resolution can exceed the Rayleigh diffraction bound by more than a factor of 10. The resolution depends on the bandwidth of the filter, and the relationship between the two is investigated and discussed. In combination with compressed sensing programming, not only high resolution can be maintained but also image quality can be improved, while a much lower sampling number is sufficient.
Keywords:  ghost imaging      bandpass filtering      compressed sensing      super resolution  
Received:  17 August 2020      Revised:  22 September 2020      Published:  19 November 2020
PACS:  87.57.cf (Spatial resolution)  
  87.63.lm (Image enhancement)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0504302 and 2017YFB0503301) and Defense Industrial Technology Development Program (Grant No. D040301-1).
Corresponding Authors:  Corresponding author. E-mail: xi-haochen@163.com   

Cite this article: 

Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安) Super-resolution filtered ghost imaging with compressed sensing 2020 Chin. Phys. B 29 128704

[1] Born M and Wolf E1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (New York: Cambridge University Press)
[2] Hell S W Science 316 1153 DOI: 10.1126/science.11373952007
[3] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F Science 313 1642 DOI: 10.1126/science.11273442006
[4] Moerner W E Proc. Natl. Acad. Sci. USA 104 12596 DOI: 10.1073/pnas.06100811042007
[5] Pittman T, Shih Y H, Strekalov D and Sergienko A Phys. Rev. A 52 R3429 DOI: 10.1103/PhysRevA.52.R34291995
[6] Cheng J and Han S S Phys. Rev. Lett. 92 093903 DOI: 10.1103/PhysRevLett.92.0939032004
[7] Gatti A, Brambilla E, Bache M and Lugiato L A Phys. Rev. Lett. 93 093602 DOI: 10.1103/PhysRevLett.93.0936022004
[8] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A Phys. Rev. Lett. 94 183602 DOI: 10.1103/PhysRevLett.94.1836022005
[9] Cai Y J and Zhu S Y Phys. Rev. E 71 056607 DOI: 10.1103/PhysRevE.71.0566072005
[10] Cao D Z, Xiong J and Wang K G Phys. Rev. A 71 013801 DOI: 10.1103/PhysRevA.71.0138012005
[11] Valencia A, Scarcelli G, D'Angelo M and Shih Y Phys. Rev. Lett. 94 063601 DOI: 10.1103/PhysRevLett.94.0636012005
[12] Zhang D, Zhai Y H, Wu L A and Chen X H Opt. Lett. 30 2354 DOI: 10.1364/OL.30.0023542005
[13] Chen X H, Liu Q, Luo K H and Wu L A Opt. Lett. 34 695 DOI: 10.1364/OL.34.0006952009
[14] Zhang P L, Gong W L, Shen X, Huang D J and Han S S Opt. Lett. 34 1222 DOI: 10.1364/OL.34.0012222009
[15] Sprigg J, Peng T and Shih Y H Sci. Rep. 6 38077 DOI: 10.1038/srep380772016
[16] Gong W L and Han S S Phys. Lett. A 376 1519 DOI: 10.1016/j.physleta.2012.03.0272012
[17] Oh J E, Cho Y W, Scarcelli G and Kim Y H Opt. Lett. 38 682 DOI: 10.1364/OL.38.0006822013
[18] Yao X R, Li L Z, Liu X F, Yu W K and Zhai G J Chin. Phys. B 24 044203 DOI: 10.1088/1674-1056/24/4/0442032015
[19] Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A Opt. Lett. 42 5290 DOI: 10.1364/OL.42.0052902017
[20] Meng S Y, Sha Y H, Fu Q, Bao Q Q, Shi W W, Li G D, Chen X H and Wu L A Opt. Lett. 43 4759 DOI: 10.1364/OL.43.0047592018
[21] Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L and Wang K G Appl. Phys. Lett. 92 201102 DOI: 10.1063/1.29197192008
[22] Chan K W C, O'Sullivan M N and Boyd R W Opt. Lett. 34 3343 DOI: 10.1364/OL.34.0033432009
[23] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A Opt. Lett. 35 1166 DOI: 10.1364/OL.35.0011662010
[24] Ferri F, Magatti D, Lugiato L A and Gatti A Phys. Rev. Lett. 104 253603 DOI: 10.1103/PhysRevLett.104.2536032010
[25] Shapiro J H Phys. Rev. A 78 061802(R) DOI: 10.1103/PhysRevA.78.0618022008
[26] Luo K H, Huang B Q, Zheng W M and Wu L A Chin. Phys. Lett. 29 074216 DOI: 10.1088/0256-307X/29/7/0742162012
[27] Katz O, Bromberg Y and Silberberg Y Appl. Phys. Lett. 95 131110 DOI: 10.1063/1.32382962009
[28] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M Opt. Lett. 35 1148 DOI: 10.1364/OL.35.0011482010
[29] McKechnie T S Opt. Acta 19 729 DOI: 10.1080/7138186471972
[30] Chmyrow A, Keller J, Grotjohann T, Ratz M, d'Este E, Jakobs S, Eggeling C and Hell S W Nat. Methods 10 737 DOI: 10.1038/nmeth.25562013
[31] Yu W T, Ji Z H, Dong D S, Yang X S, Xiao Y F, Gong Q H, Xi P and Shi K B Laser Photon. Rev. 10 147 DOI: 10.1002/lpor.2015001512016
[32] Chen Z P, Shi J H and Zeng G H Appl. Opt. 55 8644 DOI: 10.1364/AO.55.0086442016
[33] Wright S J, Nowak R D and Figueiredo M A T IEEE Trans. Signal Process 57 2479 DOI: 10.1109/TSP.2009.20168922009
[34] Zhao C Q, Cong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S Appl. Phys. Lett. 101 141123 DOI: 10.1063/1.47578742012
[35] Basano L and Ottonello P Opt. Express 15 12386 DOI: 10.1364/OE.15.0123862007
[1] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[2] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[3] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[4] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[5] Mask-based denoising scheme for ghost imaging
Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天). Chin. Phys. B, 2019, 28(8): 084204.
[6] Enhancement of spatial resolution of ghost imaging via localizing and thresholding
Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利). Chin. Phys. B, 2019, 28(4): 044202.
[7] Influence of random phase modulation on the imaging quality of computational ghost imaging
Chao Gao(高超), Xiao-Qian Wang(王晓茜), Hong-Ji Cai(蔡宏吉), Jie Ren(任捷), Ji-Yuan Liu(刘籍元), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2019, 28(2): 020201.
[8] Ghost images reconstructed from fractional-order moments with thermal light
De-Zhong Cao(曹德忠), Qing-Chen Li(李清晨), Xu-Cai Zhuang(庄绪财), Cheng Ren(任承), Su-Heng Zhang(张素恒), Xin-Bing Song(宋新兵). Chin. Phys. B, 2018, 27(12): 123401.
[9] Visibility enhancement in two-dimensional lensless ghost imaging with true thermal light
Xi-Hao Chen(陈希浩), Ling Yan(燕玲), Wei Wu(吴炜), Shao-Ying Meng(孟少英), Ling-An Wu(吴令安), Zhi-Bin Sun(孙志斌), Chao Wang(王超), Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2017, 26(6): 060702.
[10] Optical encryption scheme based on ghost imaging with disordered speckles
Yu-dong Zhang(张玉东), Sheng-mei Zhao(赵生妹). Chin. Phys. B, 2017, 26(5): 054205.
[11] Reflective ghost imaging free from vibrating detectors
Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉). Chin. Phys. B, 2017, 26(10): 104204.
[12] Compressed sensing sparse reconstruction for coherent field imaging
Bei Cao(曹蓓), Xiu-Juan Luo(罗秀娟), Yu Zhang(张羽), Hui Liu(刘 辉), Ming-Lai Chen(陈明徕). Chin. Phys. B, 2016, 25(4): 040701.
[13] Lensless ghost imaging through the strongly scattering medium
Zhe Yang(杨哲), Lianjie Zhao(赵连洁), Xueliang Zhao(赵学亮), Wei Qin(秦伟), Junlin Li(李俊林). Chin. Phys. B, 2016, 25(2): 024202.
[14] Phase modulation pseudocolor encoding ghost imaging
Duan De-Yang, Zhang Lu, Du Shao-Jiang, Xia Yun-Jie. Chin. Phys. B, 2015, 24(2): 024202.
[15] Increasing the range accuracy of three-dimensional ghost imaging ladar using optimum slicing number method
Yang Xu, Zhang Yong, Xu Lu, Yang Cheng-Hua, Wang Qiang, Liu Yue-Hao, Zhao Yuan. Chin. Phys. B, 2015, 24(12): 124202.
[1] XU YONG-CHEN, ZHANG JIA-MING, SHEN XUE-CHU. RAMAN STUDIES ON THE PHASE TRANSITIONS OF (NH4)2SnBr6 CRYSTALS[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(9): 682 -690 .
[2] Ye Fei, Xu Bo-wei. SINE-GORDON MODEL WITH LOCAL SYMMETRIC POTENTIALS[J]. Acta Phys. Sin. (Overseas Edition), 1998, 7(10): 739 -743 .
[3] Huang Hong-bin, Xu Ling, Chen Hong-ming, Huang Xin-fan, Chen Kun-ji, Feng Duan. ORGANOMETALLIC SYNTHESIS AND QUANTUM SIZE EFFECT OF CdSe NANOCRYSTALLITES[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(1): 40 -45 .
[4] Weng Ming-qi, Wu Hang-sheng. TWO-DIMENSIONAL HOT-ELECTRON TRANSPORT IN GaAs-AlGaAs HETEROJUNCTIONS[J]. Acta Phys. Sin. (Overseas Edition), 1999, 8(9): 682 -689 .
[5] Xue Yu. Analysis of the stability and density waves for traffic flow[J]. Chin. Phys., 2002, 11(11): 1128 -1134 .
[6] Wu Ya-Bo, Li Jiu-Li, Li Lei. New ways of deriving Arnowitt-Deser-Misner constraint equations in four-dimensional gravity[J]. Chin. Phys., 2002, 11(3): 222 -225 .
[7] Wang Hong-Xia, He Chen. Analysis of global exponential stability for a class of bi-directional associative memory networks[J]. Chin. Phys., 2003, 12(3): 259 -263 .