Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117304    DOI: 10.1088/1674-1056/abc15d
Special Issue: SPECIAL TOPIC — Machine learning in condensed matter physics
SPECIAL TOPIC—Machine learning in condensed matter physics Prev   Next  

Artificial neural network potential for gold clusters

Ling-Zhi Cao(曹凌志)1,2, Peng-Ju Wang(王鹏举)3, Lin-Wei Sai(赛琳伟)4, Jie Fu(付洁)1,2, †, and Xiang-Mei Duan(段香梅)1,2,, ‡
1 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
2 Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo 315211, China
3 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
4 College of Science, Hohai University, Changzhou 213022, China
Abstract  

In cluster science, it is challenging to identify the ground state structures (GSS) of gold (Au) clusters. Among different search approaches, first-principles method based on density functional theory (DFT) is the most reliable one with high precision. However, as the cluster size increases, it requires more expensive computational cost and becomes impracticable. In this paper, we have developed an artificial neural network (ANN) potential for Au clusters, which is trained to the DFT binding energies and forces of 9000 AuN clusters (11 ≤ N ≤ 100). The root mean square errors of energy and force are 13.4 meV/atom and 0.4 eV/Å, respectively. We demonstrate that the ANN potential has the capacity to differentiate the energy level of Au clusters and their isomers and highlight the need to further improve the accuracy. Given its excellent transferability, we emphasis that ANN potential is a promising tool to breakthrough computational bottleneck of DFT method and effectively accelerate the pre-screening of Au clusters’ GSS.

Keywords:  empirical potential      artificial neural network      gold cluster      first-principles  
Received:  10 August 2020      Revised:  14 September 2020      Accepted manuscript online:  15 October 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11804175, 11874033, 11804076, and 91961204) and the K.C. Wong Magna Foundation in Ningbo University.
Corresponding Authors:  Corresponding author. E-mail: fujie@nbu.edu.cn Corresponding author. E-mail: duanxiangmei@nbu.edu.cn   

Cite this article: 

Ling-Zhi Cao(曹凌志), Peng-Ju Wang(王鹏举), Lin-Wei Sai(赛琳伟), Jie Fu(付洁), and Xiang-Mei Duan(段香梅) Artificial neural network potential for gold clusters 2020 Chin. Phys. B 29 117304

Fig. 1.  

Schematic diagram of an ANN model (N0N1–⋯–Nn).

Network Number of weight RMSE/(meV/atom) MAE/(meV/atom)
architecture parameters Training set Test set Training set Test set
26–2–2–1 63 19.2 20.4 14.1 14.5
26–5–5–1 171 18.6 17.8 13.7 13.2
26–10–10–1 391 16.2 16.1 12.0 11.9
26–15–15–1 661 16.0 16.7 11.9 12.4
26–20–20–1 981 15.3 17.2 11.4 12.5
Table 1.  

ANN architecture complexity test. Root mean square error (RMSE) and mean absolute error (MAE) are the values after 1000 iterations.

Fig. 2.  

Comparison of binding energy and force calculated by ANN and DFT.

Fig. 3.  

Calculated binding energies of Au11 – 80 clusters by different approaches.

Fig. 4.  

Comparison of binding energies of Au20, Au40, Au60, and Au80 cluster isomers by ANN and DFT.

Fig. 5.  

Binding energies and relative binding energies of Au27 isomers by ANN and DFT.

[1]
Daniel M C Astruc D 2004 Chem. Rev. 104 293 DOI: 10.1021/cr030698+
[2]
Ahmed S Annu Ikram S Yudha S S 2016 J. Photochem. Photobiol. B 161 141 DOI: 10.1016/j.jphotobiol.2016.04.034
[3]
Turkevich J Stevenson P C Hillier J 1951 Discuss. Faraday Soc. 11 55 DOI: 10.1039/df9511100055
[4]
Mingos D M 2015 Dalton Trans. 44 6680 DOI: 10.1039/C5DT00253B
[5]
Wang J Wang G Zhao J 2002 Phys Rev B 66 035418 DOI: 10.1103/PhysRevB.66.035418
[6]
Thorn A Rojas-Nunez J Hajinazar S Baltazar S E Kolmogorov A N 2019 J. Phys. Chem. C 123 30088 DOI: 10.1021/acs.jpcc.9b08517
[7]
Yang D Pei W Zhou S Zhao J Ding W Zhu Y 2020 Angew. Chem. Int. Ed. 59 1919 DOI: 10.1002/anie.v59.5
[8]
Zhou S Pei W Du Q Zhao J 2019 Phys. Chem. Chem. Phys. 21 10587 DOI: 10.1039/C9CP01517E
[9]
Hu Y L Zhu H R Wei S H 2019 Chin. Phys. B 28 113101 DOI: 10.1088/1674-1056/ab4cdd
[10]
Du Q Wu X Wang P Wu D Sai L King R B Park S J Zhao J 2020 J. Phys. Chem. C 124 7449 DOI: 10.1021/acs.jpcc.9b11588
[11]
Chen D D Kuang X Y Zhao Y R Shao P Li Y F 2011 Chin. Phys. B 20 063601 DOI: 10.1088/1674-1056/20/6/063601
[12]
Haruta M Yamada N Kobayashi T Iijima S 1989 J. Catal. 115 301 DOI: 10.1016/0021-9517(89)90034-1
[13]
Brust M Walker M Bethell D Schiffrin D J Whyman R 1994 J. Chem. Soc., Chem. Commun. 1994 801 DOI: 10.1039/C39940000801
[14]
Mingos D M P 1996 J. Chem. Soc., Dalton Trans. 5 561 DOI: 10.1039/DT9960000561
[15]
Häberlen O D Chung S C Stener M Rösch N 1997 J. Chem. Phys. 106 5189 DOI: 10.1063/1.473518
[16]
Oliveira L F L Tarrat N Cuny J Morillo J Lemoine D Spiegelman F Rapacioli M 2016 J. Phys. Chem. A. 120 8469 DOI: 10.1021/acs.jpca.6b09292
[17]
Dong Y Springborg M 2007 J. Phys. Chem. C 111 12528 DOI: 10.1021/jp071120x
[18]
Tarrat N Rapacioli M Cuny J Morillo J Heully J L Spiegelman F 2017 Comput. Theor. Chem. 1107 102 DOI: 10.1016/j.comptc.2017.01.022
[19]
Koskinen P Häkkinen H Seifert G Sanna S Frauenheim T Moseler M 2006 New. J. Phys. 8 9 DOI: 10.1088/1367-2630/8/1/009
[20]
Pyykko P 2004 Angew. Chem. Int. Ed. 43 4412 DOI: 10.1002/(ISSN)1521-3773
[21]
Pyykko P 2008 Chem. Soc. Rev. 37 1967 DOI: 10.1039/b708613j
[22]
Xiao L Tollberg B Hu X Wang L 2006 J. Chem. Phys. 124 114309 DOI: 10.1063/1.2179419
[23]
Sutton A P Chen J 1990 Phil. Mag. Lett. 61 139 DOI: 10.1080/09500839008206493
[24]
Cleri F Rosato V V 1993 Phys Rev B 48 22 DOI: 10.1103/PhysRevB.48.22
[25]
Artrith N Kolpak A M 2015 Comp. Mater. Sci. 110 20 DOI: 10.1016/j.commatsci.2015.07.046
[26]
Lee K Yoo D Jeong W Han S 2019 Comput. Phys. Commun. 242 95 DOI: 10.1016/j.cpc.2019.04.014
[27]
Sumpter B G Noid D W 1992 Chem. Phys. Lett. 192 455 DOI: 10.1016/0009-2614(92)85498-Y
[28]
Tai No K Ha Chang B Yeon Kim S Shik Jhon M Scheraga H A 1997 Chem. Phys. Lett. 271 152 DOI: 10.1016/S0009-2614(97)00448-X
[29]
Lorenz S Groß A Scheffler M 2004 Chem. Phys. Lett. 395 210 DOI: 10.1016/j.cplett.2004.07.076
[30]
Handley C M Popelier P L 2010 J. Phys. Chem. A. 114 3371 DOI: 10.1021/jp9105585
[31]
Guo P Zheng J M Zhao P Zheng L L Ren Z Y 2010 Chin. Phys. B 19 083601 DOI: 10.1088/1674-1056/19/8/083601
[32]
Artrith N Urban A 2016 Comp. Mater. Sci. 114 135 DOI: 10.1016/j.commatsci.2015.11.047
[33]
Artrith N Urban A Ceder G 2017 Phys Rev B 96 014112 DOI: 10.1103/PhysRevB.96.014112
[34]
Broyden C G 1970 IMA J. Appl. Math. 6 76 DOI: 10.1093/imamat/6.1.76
[35]
Fletcher R 1970 The Computer Journal 13 317 DOI: 10.1093/comjnl/13.3.317
[36]
Goldfarb D 1970 Math. Comput. 24 23 DOI: 10.1090/S0025-5718-1970-0258249-6
[37]
Shanno D F 1970 Math. Comput. 24 647 DOI: 10.1090/S0025-5718-1970-0274029-X
[38]
Byrd R H Lu P Nocedal J Zhu C 1995 SIAM. J. Sci. Comput. 16 1190 DOI: 10.1137/0916069
[39]
Behler J 2011 Phys. Chem. Chem. Phys 13 17930 DOI: 10.1039/c1cp21668f
[40]
Behler J Parrinello M 2007 Phys. Rev. Lett. 98 146401 DOI: 10.1103/PhysRevLett.98.146401
[41]
Artrith N Kolpak A M 2014 Nano. Lett. 14 2670 DOI: 10.1021/nl5005674
[42]
Khaliullin R Z Eshet H Kühne T D Behler J Parrinello M 2010 Phys Rev B 81 100103 DOI: 10.1103/PhysRevB.81.100103
[43]
Artrith N Morawietz T Behler J 2011 Phys Rev B 83 153101 DOI: 10.1103/PhysRevB.83.153101
[44]
Morawietz T Behler J 2013 J. Phys. Chem. A. 117 7356 DOI: 10.1021/jp401225b
[45]
Artrith N Behler J 2012 Phys Rev B 85 045439 DOI: 10.1103/PhysRevB.85.045439
[46]
Artrith N Hiller B Behler J 2013 Phys Status Solidi B 250 1191 DOI: 10.1002/pssb.v250.6
[47]
Delley B 1990 J. Chem. Phys. 92 508 DOI: 10.1063/1.458452
[48]
Delley B 2000 J. Chem. Phys. 113 7756 DOI: 10.1063/1.1316015
[49]
Hohenberg P Kohn W 1964 Phys. Rev. 136 B864 DOI: 10.1103/PhysRev.136.B864
[50]
Kohn W Sham L J 1965 Phys. Rev. 140 A1133 DOI: 10.1103/PhysRev.140.A1133
[51]
Perdew J P Burke K Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.3865
[52]
Perdew J P Burke K Ernzerhof M 1997 Phys. Rev. Lett. 78 1396 DOI: 10.1103/PhysRevLett.78.1396
[53]
Behler J 2011 J. Chem. Phys. 134 074106 DOI: 10.1063/1.3553717
[54]
Doye J P K Wales D J 1998 New. J. Chem. 22 733 DOI: 10.1039/A709249K
[55]
[56]
Nhat P V Si N T Nguyen M T 2020 J. Phys. Chem. A. 124 1289 DOI: 10.1021/acs.jpca.9b09287
[57]
Plimpton S 1995 J. Comput. Phys. 117 1 DOI: 10.1006/jcph.1995.1039
[58]
G W Rodrigue G 1989 Math. Comput. 53 775 DOI: 10.2307/2008751
[59]
[1] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[2] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[3] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[4] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[5] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[6] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[7] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[8] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[9] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[10] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[11] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[12] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[13] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[14] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[15] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
No Suggested Reading articles found!