Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026601    DOI: 10.1088/1674-1056/abc158
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface

Chun-Bao Qi(戚春保)1, Tao Wang(王涛)1,†, Ru-Song Li(李如松)2, Jin-Tao Wang(王金涛)1, Ming-Ao Qin(秦铭澳)1, and Si-Hao Tao(陶思昊)1
1 Xi'an Research Institute of High Technology, Xi'an 710025, China; 2 Xi'an Jiaotong University, Xi'an 710049, China
Abstract  First principles calculation is performed to study the co-adsorption behaviors of O2 and CO2 on δ -Pu(100) surface by using a slab model within the framework of density functional theory (DFT). The results demonstrate that the most favorable co-adsorption configurations are T v-C4O7 and T p1-C2O8, with adsorption energy of -17.296 eV and -23.131 eV for CO2-based and O2-based system, respectively. The C and O atoms mainly interact with the Pu surface atoms. Furthermore, the chemical bonding between C/O and Pu atom is mainly of ionic state, and the reaction mechanism is that C 2s, C 2p, O 2s, and O 2p orbitals overlap and hybridize with Pu 6p, Pu 6d, and Pu 5f orbital, resulting in the occurrence of new band structure. The adsorption and dissociation of CO2 molecule are obviously promoted by preferentially occupying adsorbed O atoms, therefore, a potential CO2 protection mechanism for plutonium-based materials is that in CO2 molecule there occurs complete dissociation of CO\(_2\to \)C+O+O, then the dissociated C atom combines with O atom from O2 dissociation and produces CO, which will inhibit the O2 from further oxidizing Pu surface, and slow down the corrosion rate of plutonium-based materials.
Keywords:  adsorption energy      density functional theory      electron density      reaction mechanism  
Published:  29 January 2021
PACS:  66.30.-h (Diffusion in solids)  
  65.40.gh (Work functions)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  Corresponding author. E-mail: wtao009@163.com   

Cite this article: 

Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊) First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface 2021 Chin. Phys. B 30 026601

1 Haschke J M, Hodges A E and Lucas R L 1987 J. Less-Common. Met. 133 155
2 S Méot-Reymond and Fournier J M 1996 J. Alloys Compd. 232 119
3 Almeida T, Cox L E, Ward J W and Naegele J R 1993 Surf. Sci. s287 141
4 Stakebake J L, Larson D T and Haschke J M 1993 J. Alloys Compd. 202 251
5 Oetting F L 1967 Chem. Rev. 67 261
6 Haschke J M and Ricketts T E 1997 J. Alloys Compd. 252 148
7 Eriksson O and Cox L E 1991 Phys. Rev. B 43 4590
8 Huda M N and Ray A K 2005 Physica B 366 95
9 Huda M N and Ray A K 2004 Eur. Phys. J. B 40 337
10 Huda M N and Ray A K 2005 Eur. Phys. J. B 43 131
11 Huda M N and Ray A K 2004 Physica B 352 5
12 Li G, Lai X C and Sun Y 2005 Acta Phys.-Chim. Sin. 21 686 (in Chinese)
13 Li G, Lai X C and Sun Y 2005 J. Atom. Mol. Phys. 02 365 (in Chinese)
14 Atta-Fynn R and Ray A 2007 Phys. Rev. B 75 5112
15 Atta-Fynn R and Ray A K 2007 Physica B 400 307
16 Meng D Q, Luo W H, Li G and Chen H C 2009 Acta Phys. Sin. 12 8224 (in Chinese)
17 Luo W H, Meng D Q, Li G and Chen H C 2008 Acta Phys. Sin. 57 160 (in Chinese)
18 Wang J and Ray A K 2014 J. Comput. Theor. Nanosci. 11 1710
19 Atta-Fynn R and Ray A K 2009 Eur. Phys. J. B 70 171
20 Wei H Y, Song H T, Xiong X L, Wang G Q, Hu R and Luo S Z 2009 Comput. Appl. Chem. 26 913 (in Chinese)
21 Guo J J, Liu G P and Wei H Y 2013 Comput. Appl. Chem. 30 605 (in Chinese)
22 Li R S, He B, Xu P, Zhao F T and W F 2014 Atom. Energ. Sci. Technol. 48 43 (in Chinese)
23 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169
24 Hohenberg P and Kohn W 1964 Phys. Rev. 136 864
25 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
26 Blochl P E 1994 Phys. Rev. B 50 17953
27 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
28 Huang G Y, Wang C Y and Wang J T 2009 J. Phys.: Condens. Matter 21 345802
29 Sui P F, Dai J Q, Zhao Y C and Dai Z H 2019 Chin. Phys. B 27 097311
30 Wang D W, Wang C Y, Yu T and Liu W Q 2020 Chin. Phys. B 29 043103
31 Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R and Singh D J 1992 Phys. Rev. B 46 6671
32 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
33 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
34 Payne M C, Teter M P, Allan D C and Arias A 1992 Rev. Mod. Phys. 64 1045
35 Lide D R 2003 Crc. Press. 257 423
36 Ogren and Paul J 2002 J. Chem. Educ. 79 117
37 Li G, Luo W H and Chen H C 2011 Acta Phys.-Chim. Sin. 10 2319 (in Chinese)
38 Qi C B, Wang T, Wang J T, Tao S H and Qin M A2020 Rare. Metal. Mat. Eng. (accepted, manuscript number: 20200477)
39 Qi C B, Wang T, Wang J T, Qin M A and Tao S H2020 Roy. Soc. Open. Sci.(under review, manuscript number: RSOS-201395)
40 Li G, Sun Y, Wang X L, Gao T and Zhu Z H 2003 Acta Phys.-Chim. Sin. 4 356
41 Green D W and Reedy G T 1978 Chem. Inform. 69 544
42 Haire R G 1994 J. Alloy. Compd. s213-214 185
43 Fu Y B, Wang X L and Zhu Z H 2000 Eng. Sci. 2 59 (in Chinese)
44 Henkelman G, Amaldsson A and Jonsson H 2006 Comp. Mater. Sci. 36 354
45 Hao Y G, Eriksson O, Fernando G W and Cooper B R 1993 Phys. Rev. B 47 6680
46 Wei H Y, Hu R, Xiong X L, Wang G Q, Song H T and Luo S Z 2010 J. Mol. Sci. 01 44 (in Chinese)
47 Wang X L, Fu Y B and Xie R S 1999 Atom. Energ. Sci. Technol. 33 2 (in Chinese)
48 Liu K Z, Yu Y, Zou J S, Wu S, Wang X L and Fu Y B 1999 Chin. Nucl. Sci. Technol. Rep. 00 881 (in Chinese)
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] Detailed structural, mechanical, and electronic study of five structures for CaF 2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[5] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[6] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[7] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[8] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[9] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[10] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[11] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[12] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[13] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[14] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[15] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
No Suggested Reading articles found!