Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014206    DOI: 10.1088/1674-1056/abc153
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser

Jun-Kai Shi(石俊凯)1, Deng-Feng Dong(董登峰)1,2,†, Ying-Ling Pan(潘映伶)1, Guan-Nan Li(李冠楠)1, Yao Li(黎尧)1, Li-Tuo Liu(刘立拓)1, Xiao-Mei Chen(陈晓梅)1, and Wei-Hu Zhou(周维虎)1,2
1 Optoelectronic Technology R & D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2× 2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure, the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 mW, 51.3 mW, and 13.2 mW, respectively. The total single pulse output power is 69.8 mW, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.
Keywords:  figure-9 mode-locked fiber laser      nonlinear amplifying loop mirror      suppression of multi-pulse formation  
Received:  31 July 2020      Revised:  26 August 2020      Accepted manuscript online:  15 October 2020
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51905528), the Key Research Project of Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC008), and the National Key Research and Development Project, China (Grant Nos. 2019YFB2005600 and 2018YFB2003403).
Corresponding Authors:  Corresponding author. E-mail: dongdengfeng@ime.ac.cn   

Cite this article: 

Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎) Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser 2021 Chin. Phys. B 30 014206

1 Shi J K and Zhou W H 2018 Chin. Opt. Lett. 16 031404
2 Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y X, Yang X and Zhu J S 2011 Opt. Express 19 1168
3 Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q and Lin R Y 2015 Opt. Express 22 11417
4 Lian F Q, Fan Z W, Bai Z N, Li X H and Wang Q J 2015 Photon. Res. 3 129
5 Armas-Rivera I, Cuadrado-Laborde C, Carrascosa A, Kuzin E A, Beltran-Perez G, Diez A and Andres M V 2016 Opt. Express 24 9966
6 Hou L, Guo H Y, Wang Y G, Sun J, Lin Q M, Bai Y and Bai J T 2018 Opt. Express 26 9063
7 Han X X 2018 Appl. Opt. 57 807
8 Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L and Abramski K 2015 Photon. Res. 3 119
9 Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R and Peyghambarian N 2016 IEEE Photon. Technol. Lett. 28 7
10 Li L, Su Y L, Wang Y G, Wang X, Wang Y S, Li X H, Mao D and Si J H2017 IEEE J. Sel. Top. Quantum Electron. 23 1
11 Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G and Ruan S C 2018 Photon. Res. 6 535
12 Chen Y, Chen S Q, Liu J, Gao Y X and Zhang W J 2016 Opt. Express 24 13316
13 Hisyam M B, Rusdi M F M, Latiff A A and Harun S W2017 IEEE J. Sel. Top. Quantum Electron. 23 39
14 Zhang J, Kong Z Y, Liu Y Z, Wang A M and Zhang Z G 2016 Photon. Res. 4 27
15 Kuang Q Q, Zhan L, Gu Z C and Wang Z Q 2015 J. Lightwave Technol. 33 391
16 Szczepanek J, Kardas T M, Michalska M, Radzewicz C and Stepanenko Y 2015 Opt. Lett. 40 3500
17 Aleshkina S S, Bubnov M M, Senatorov A K, Lipatov D S and Likhachev M E 2016 Laser Phys. Lett. 13 035104
18 Liu W, Shi H S, Cui J H, Xie C, Song Y J, Wang C Y and Hu M L2018 Opt. Lett. 43 2848
19 Liu G Y, Wang A M and Zhang Z G 2017 IEEE Photon. Technol. Lett. 29 2055
20 Liu Z W, Ziegler Z M, Wright L G and Wise F W 2017 Optica 4 649
21 Liu W, Liao R Y, Zhao J, Cui J H, Song Y J, Wang C Y and Hu M L 2019 Optica 6 194
22 Wang Z K, Wang D N, Yang F, Li L J, Zhao C L, Xu B, Jin S Z, Cao S Y and Fang Z J 2018 Opt. Lett. 43 2078
23 Tegin U and Ortac B 2018 Opt. Lett. 43 1611
24 Wang Z T, Xu Y H, Dhanabalan S C, Sophia J, Zhao C J, Xu C W, Xiang Y J, Li J Q and Zhang H2016 IEEE Photon. J. 7 1503310
25 Chen Y, Wu M, Tang P H, Chen S Q, Du J, Jiang G B, Li Y, Zhao C J, Zhang H and Wen S C 2014 Laser Phys. Lett. 11 055101
26 Song Y, Chen S, Zhang Q, Li L, Zhao L, Zhang H and Tang D 2016 Opt. Express 24 25933
27 Luo A P, Zhu P F, Liu H, Zheng X W, Zhao N, Liu M, Cui H, Luo Z C and Xu W C 2014 Opt. Express 22 27019
28 Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
29 Chouli S and Grelu P 2009 Opt. Express 17 11776
30 Chang W, Ankiewicz A, Soto-Crespo J M and Akhmediev N 2008 Phys. Rev. A 78 023830
31 Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580
32 Zhou Y, Lin W, Cheng H H, Wang W L, Qiao T, Qian Q, Xu S H and Yang Z M 2018 Opt. Express 26 10842
33 Zhao J Q, Li L, Zhao L M, Tang D Y, Shen D Y and Su L 2019 Photon. Res. 7 332
34 Shi J K, Li Y, Gao S Y, Pan Y L, Wang G M, Ji R Y and Zhou W H 2018 Chin. Opt. Lett. 16 121404
[1] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[2] Molecular photoelectron momentum and angular distributions of N2 molecules by ultrashort attosecond laser pulses
Si-Qi Zhang(张思琪), Qi Zhen(甄琪), Zhi-Jie Yang(杨志杰), Jun Zhang(张军), Ai-Hua Liu(刘爱华), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(4): 043201.
[3] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[4] Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(1): 013201.
[5] Role of quantum paths in generation of attosecond pulses
M R Sami and A Shahbaz†. Chin. Phys. B, 2020, 29(10): 104207.
[6] An improved method for the investigation of high-order harmonic generation from graphene
Zhong Guan(管仲), Lu Liu(刘璐), Guo-Li Wang(王国利)†, Song-Feng Zhao(赵松峰), Zhi-Hong Jiao(焦志宏), and Xiao-Xin Zhou(周效信)‡. Chin. Phys. B, 2020, 29(10): 104206.
[7] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[8] Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser
Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明). Chin. Phys. B, 2020, 29(8): 084101.
[9] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
[10] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[11] Photoelectron momentum distributions of single-photon ionization under a pair of elliptically polarized attosecond laser pulses
Hui-Fang Cui(崔会芳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(7): 074203.
[12] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
[13] Controlling paths of high-order harmonic generation by orthogonal two-color fields
Ze-Hui Ma(马泽慧), Cai-Ping Zhang(张彩萍), Jun-Lin Ma(马俊琳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(4): 043201.
[14] Numerical simulations of strong-field processes in momentum space
Yan Xu(徐彦), Xue-Bin Bian(卞学滨). Chin. Phys. B, 2020, 29(2): 023202.
[15] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
No Suggested Reading articles found!