Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028503    DOI: 10.1088/1674-1056/abc0df
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C

Si-Cheng Liu(刘思成)1,2, Xiao-Yan Tang(汤晓燕)1,2,3, Qing-Wen Song(宋庆文)1,2,3,†, Hao Yuan(袁昊)1,2, Yi-Meng Zhang(张艺蒙)1,2, Yi-Men Zhang(张义门)1,2,3, and Yu-Ming Zhang(张玉明)1,2,3
1 Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China; 2 School of Microelectronics, Xidian University, Xi'an 710071, China; 3 XiDian-WuHu Research Institute, WuHu 241000, China
Abstract  This paper presents the development of lateral depletion-mode n-channel 4H-SiC junction field-effect transistors (LJFETs) using double-mesa process toward high-temperature integrated circuit (IC) applications. At room temperature, the fabricated LJFETs show a drain-to-source saturation current of 23.03 μ A/μm, which corresponds to a current density of 7678 A/cm2. The gate-to-source parasitic resistance of 17.56 kΩ μ m is reduced to contribute only 13.49% of the on-resistance of 130.15 kΩ μ m, which helps to improve the transconductance up to 8.61 μ S/μm. High temperature characteristics of LJFETs were performed from room temperature to 400 °C. At temperatures up to 400 °C in air, it is observed that the fabricated LJFETs still show normally-on operating characteristics. The drain-to-source saturation current, transconductance and intrinsic gain at 400 °C are 7.47 μ A/μm, 2.35 μ S/μm and 41.35, respectively. These results show significant improvement over state-of-the-art and make them attractive for high-temperature IC applications.
Keywords:  junction field-effect transistors      high temperature      4H-SiC      depletion-mode  
Published:  18 January 2021
PACS:  85.30.Tv (Field effect devices)  
  85.40.Ls (Metallization, contacts, interconnects; device isolation)  
Fund: Project supported by the Key Research and Development Program of Shaanxi Province, China (Grant No. 2020ZDLGY03-07), the National Science Foundation of China (Grant Nos. 61774117 and 61774119), the Science Challenge Project (Grant No. TZ2018003), the National Key R&D Program of China (Grant No. 2017YFB0102302), the Shaanxi Science & Technology Nova Program, China (Grant No. 2019KJXX-029), the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2020B010170001), and the Fundamental Research Funds for the Central Universities, China (Grant No. 5012-20106205935).
Corresponding Authors:  Corresponding author. E-mail: qwsong@xidian.edu.cn   

Cite this article: 

Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明) Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C 2021 Chin. Phys. B 30 028503

1 Neudeck P G, Okojie R S and Chen L 2002 Proc. IEEE 90 1065
2 Song Q W, Zhang Y M, Han J S, Philop T, Sima D, Zhang Y M, Tang X Y and Guo H 2013 Chin. Phys. B 22 027302
3 Deng Y H, Xie G, Wang T and Sheng K 2013 Chin. Phys. B 22 097201
4 Chen S and Sheng K 2014 Chin. Phys. B 23 077201
5 Watson J and Castro G 2015 J. Mater. Sci.: Mater. Electron. 26 9226
6 Kuhns N, Caley L, Rahman A, Ahmed S, Di J, Mantooth H A, Francis A M and Holmes J 2016 IEEE Trans. Device Mater. Reliab. 16 105
7 Murphree R, Roy S, Ahmed S, Barlow M, Rahman A, Francis A M, Holmes J, Mantooth H A and Di J 2020 IEEE Trans. Power Electron. 35 913
8 Zetterling C, Hallen A, Hedayati R, Kargarrazi S, Lanni L, Malm B G, Mardani S, Norstorm H, Rusu A, Suvanam S S, Tian Y and Ostling M 2017 Semicond. Sci. Technol. 32 034002
9 Tian Y, Lanni L, Rusu A and Zetterling C 2016 IEEE Trans. Electron Devices 63 2242
10 Patil A C, Fu X, Anupongongarch C, Mehregany M and Garverick S L 2009 J. Microelectromech. Syst. 18 950
11 Lien W, Damrongplasit N, Paredes J H, Senesky D G, Liu T K and Pisano A P 2014 IEEE J. Electron Devices Soc. 2 164
12 Spry D J, Neudeck P G, Chen L, Luck D, Chang C W and Beheim G M 2016 IEEE Electron Device Lett. 37 625
13 Sankin I, Bondarenko V, Sheridan D C, Mazzola M S, Casady J B, Fraley J and Schupbach M 2008 Mater. Sci. Forum. 600 1087
14 Kaneko M and Kimoto T 2018 IEEE Electron Device Lett. 39 723
15 Nakajima M, Kaneko M and Kimoto T 2019 IEEE Electron Device Lett. 40 866
16 Neudeck P G, Garverick S L, Spry D J, Chen L, Beheim G M, Krasowski M J and Mehregany M 2009 Phys. Status Solidi A 206 2329
17 Spry D J and Lukco D 2012 J. Electron. Mater. 41 915
18 Spry D J, Neudeck P G, Chen L, Chang C W, Lukco D and Beheim G M 2015 Electrochem. Soc. Trans. 69 113
19 Lanni L 2014 Silicon Carbide Bipolar Technology for High Temperature Integrated Circuits (PhD Dissertation)(KTH Royal Institute of Technology)
20 Malhan R K, Bakowski M, Takeuchi Y, Sugiyama N and Schoner A 2009 Phys. Status Solid A 206 2308
21 Sheppard S T, Lauer V, Wondrak W and Niemann E 1998 Mater. Sci. Forum. 264 1077
22 Neudeck P G, Spry D J, Chen L, Beheim G M, Okojie R S, Chang C W, Meredith R D, Ferrier T L, Evans L J, Krasowski M J and Prokop N F 2008 IEEE Electron Device Lett. 29 456
23 Spry D J, Neudeck P G, Chen L Y, Evans L J, Lukco D, Chang C W and Beheim G M 2016 Mater. Sci. Forum. 858 1112
24 Razavi B2017 Design of Analog CMOS Integrated Circuits, 2nd edn (New York: McGraw-Hill) pp. 47-52
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[5] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[6] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[7] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[8] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[9] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[10] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[11] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
[12] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[13] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[14] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[15] Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3
Chao Yang(杨超), Hongwei Liang(梁红伟), Zhenzhong Zhang(张振中), Xiaochuan Xia(夏晓川), Heqiu Zhang(张贺秋), Rensheng Shen(申人升), Yingmin Luo(骆英民), Guotong Du(杜国同). Chin. Phys. B, 2019, 28(4): 048502.
No Suggested Reading articles found!