Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110504    DOI: 10.1088/1674-1056/abbbfe
GENERAL Prev   Next  

Memristor-based hyper-chaotic circuit for image encryption

Jiao-Jiao Chen(陈娇娇)1,2, Deng-Wei Yan(闫登卫)1,2, Shu-Kai Duan(段书凯)1,2,3,4,5,6, and Li-Dan Wang(王丽丹)1,2,3,4,5, †
1 College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
2 Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University, Chongqing 400715, China
3 Intelligent Transmission and Control Technology Joint Engineering Laboratory, Chongqing 400715, China
4 Brain-inspired Computing and Intelligent Control Chongqing Key Laboratory, Chongqing 400715, China
5 Chongqing Collaborative Innovation Center for Brain Science, Chongqing 400715, China
6 School of Artificial Intelligence, Southwest University, Chongqing 400715, China

The memristor is a kind of non-linear element with memory function, which can be applied to chaotic systems to increase signal randomness and complexity. In this paper, a new four-dimensional hyper-chaotic system is designed based on a flux controlled memristor model, which can generate complex chaotic attractors. The basic dynamic theory analysis and numerical simulations of the system, such as the stability of equilibrium points, the Lyapunov exponents and dimension, Poincare maps, the power spectrum, and the waveform graph prove that it has rich dynamic behaviors. Then, the circuit implementation of this system is established. The consistency of simulation program with integrated circuit emphasis (SPICE) simulation and numerical analysis proves the ability to generate chaos. Finally, a new image encryption scheme is designed by using the memristor-based hyper-chaotic system proposed in this paper. The scheme involves a total of two encryptions. By using different security analysis factors, the proposed algorithm is compared with other image encryption schemes, including correlation analysis, information entropy, etc. The results show that the proposed image encryption scheme has a large key space and presents a better encryption effect.

Keywords:  memristor      SPICE simulation      hyper-chaotic system      image encryption  
Received:  30 April 2020      Revised:  04 September 2020      Accepted manuscript online:  28 September 2020
Fund: the National Key Research and Development Program of China (Grant No. 2018YFB1306600), the National Natural Science Foundation of China (Grant Nos. 62076207 and 62076208), and the Fundamental Science and Advanced Technology Research Foundation of Chongqing, China (Grant Nos. cstc2017jcyjBX0050).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹) Memristor-based hyper-chaotic circuit for image encryption 2020 Chin. Phys. B 29 110504

Fig. 1.  

Phase portraits of system (1) with a = 3, b = 1, c = 9, e = 0.2, m = 1 in (a) xy plane, (b) yz plane, (c) xz plane, and (d) xw plane.

x y z w
S1 −155885327979.4965 −519616.0680 5.1961 −300000.9767
S2 155885376219.5367 519616.1484 −5.1961 −300001.0232
S3 0 0 0 0
Table 1.  

Equilibrium points of formula (5) when x < C5.

x y z w
S4 −5.9999× 10−38 −2.0020× 10−38 −5.999× 10−38 0
S5 −0.00003216 −0.00001072 −0.00003216 0
S6 260428016091 −67162084306 −5.19615242 38776047452.94
S7 −26043446442 −67162915693 5.196152427 −38776527455.9
Table 2.  

Equilibrium points of formula (4) when C5xC6.

x y z w
S8 −3899109.2976 −2598.3098032 5.1978846064 −1500.63494764
S9 3902904.93013 2599.57438182 −5.197883763 −1501.36505241
S10 0.00126415720 0.00042138576 0.0012641572 0.000000059188
Table 3.  

Equilibrium points of formula (5) when x > C6.

Fig. 2.  

Poincare map of (a) x = 0 and (b) y = 0.

Fig. 3.  

Lyapunov exponents of the system with a = 3, b = 1, c = 9, e = 0.2, m = 1.

Fig. 4.  

Power spectrum of the system.

Fig. 5.  

Time domain waveform of (a) ty and (b) tw.

Fig. 6.  

Hardware circuit implementation of new hyper-chaotic system.

Fig. 7.  

SPICE simulation results in (a) xy, (b) yz, (c) xz, and (d) xw planes of the system.

Fig. 8.  

Block diagram of proposed image encryption.

Fig. 9.  

Plain image of (a) Lena, (b) Cameraman, and (c) Girl; first encrypted image of (d) Lena, (e) Cameraman, and (f) Girl.

Fig. 10.  

Second encrypted image of (a) Lena, (b) Cameraman, and (c) Girl; decrypted image of (d) Lena, (e) Cameraman, and (f) Girl.

Fig. 11.  

Gray histogram of plaintext of (a) Lena, (b) Cameraman, (c) Girl; gray histogram of ciphered image of (d) Lena, (e) Cameraman, and (f) Girl.

Fig. 12.  

Correlation distribution of (a) plaintext and (b) ciphertext image in horizontal, vertical, and diagonal direction of Lena.

Fig. 13.  

Correlation distribution of (a) plaintext and (b) ciphertext image in horizontal, vertical, and diagonal direction of Cameraman.

Fig. 14.  

Correlation distribution of (a) plaintext and (b) ciphertext image in horizontal, vertical, and diagonal direction of Girl.

Test image Plain image Cipher image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Lena (proposed) 0.99570 0.98470 0.99080 −0.00570 0.00160 0.00210
Lena (Ref. [17]) 0.97190 0.94260 0.91990 0.01020 0.00670 0.00520
Lena (Ref. [20]) 0.96457 0.97864 0.95098 −0.02457 −0.02264 −0.01930
Cameraman 0.99290 0.98040 0.98810 0.00590 0.00800 −0.00170
Girl 0.99620 0.98970 0.99270 0.00830 0.00520 −0.00460
Table 4.  

Correlation coefficients of plain image and cipher image.

Test image Plaintext image Ciphertext image
Lena (proposed) 7.39820 7.96920
Lena (Ref. [17]) 7.99740
Lena (Ref. [20]) 7.43087 7.98859
Cameraman 7.00060 7.96820
Girl 7.49570 7.98780
Table 5.  

Information entropy of test images.

Test image NPCR/% UACI/% BACI/%
Lena 99.62 33.42 26.73
Cameraman 99.59 33.54 26.79
Girl 99.60 33.43 26.76
Table 6.  

Values of NPCR, UACI, and BACI of different images after modifying one pixel value.

Lorenz E N 1963 J. Atmos. Sci. 20 130 DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Chen G R 1999 Int. J. Bifurcat. Chaos. 9 1465 DOI: 10.1142/S0218127499001024
Bao B C, Liu Z, Xu J P 2009 J. Syst. Eng. Electron. 20 1179
Xiao Y Q, Wang Z Y, Cao J, Long C X, Chen Y T, Deng R, Shi J, Liu Y 2019 Opt. Commun. 440 126 DOI: 10.1016/j.optcom.2019.02.033
Chua L O 1971 IEEE Trans. Circ. Theor. 18 507 DOI: 10.1109/TCT.1971.1083337
Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80 DOI: 10.1038/nature06932
Yang Y C, Pan F, Liu Q, Liu M, Zeng F 2009 Nano. Lett. 9 1636 DOI: 10.1021/nl900006g
Shin S H, Kyungmin Kim, Kang S M 2010 IEEE Trans. 10 1536
Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183 DOI: 10.1142/S0218127408022354
Kyprianidis I M, Volos Ch K, Stouboulos I N 2010 AIP Conf. Proc. 1203 626 DOI: 10.1063/1.3322524
Stork M, Hrusak J, Mayer D 2009 Electrical and Electronics Engineering December 2009
Yang D W, Wang L D, Duan S K 2018 Acta Phys. Sin. 67 110502 in Chinese DOI: 10.7498/aps.67.20180025
Lv Y W, Min F H 2019 Acta Phys. Sin. 68 130502 in Chinese DOI: 10.7498/aps.68.20190453
Wang M J, Deng Y, Liao X H, Li Z J, Ma M L, Zeng Y C 2019 Int. J. Nonlinear Mech. 111 149 DOI: 10.1016/j.ijnonlinmec.2019.02.009
Li C H, Luo G C, Qin K 2017 Nonlinear Dyn. 87 127 DOI: 10.1007/s11071-016-3030-8
Wang X Y, Wang Y, Wang S W, Zhang Y Q, Wu X J 2018 Chin. Phys. B 27 110502 DOI: 10.1088/1674-1056/27/11/110502
Ye X L, Wang X Y, Gao S, Mou J, Wang Z S, Yang F F 2019 Nonlinear Dyn. 99 1489 DOI: 10.1007/s11071-019-05370-2
Wang L M, Dong T D, Ge M F 2019 Appl. Math. Comput. 347 293 DOI: 10.1109/ACCESS.2018.2872745
Zhang Y, Tang Y J 2017 Multimed. Tools Appl. 77 6647 DOI: 10.1007/s11042-017-4577-1
Yang F F, Mou J, Sun K H, Cao Y H, Jin J Y 2019 IEEE Access DOI: 10.1109/ACCESS.2019.2914722
Zhang L M, Sun K H, Liu W H, He S B 2017 Chin. Phys. B 26 100504 DOI: 10.1088/1674-1056/26/10/100504
Wang B, Zou F C, Cheng J 2018 Optik 154 538 DOI: 10.1016/j.ijleo.2017.10.080
Wang X Y, Xie Y X, Qin X 2012 Chin. Phys. B 21 040504 DOI: 10.1088/1674-1056/21/4/040504
Wang Z L, Min F H, Wang E R 2016 AIP Adv. 6 095316 DOI: 10.1063/1.4963743
Shi H, Wang L D 2019 Acta Phys. Sin. 68 200501 in Chinese DOI: 10.7498/aps.68.20190553
Zhang Y 2016 Chaos digital image encryption 1 Beijing Tsinghua University Press 218 in Chinese
[1] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[2] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[3] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[4] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[5] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[6] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[7] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[8] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[9] Memristor-based vector neural network architecture
Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜). Chin. Phys. B, 2020, 29(2): 028502.
[10] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[11] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[12] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[13] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[14] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
[15] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
No Suggested Reading articles found!