Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124207    DOI: 10.1088/1674-1056/abbbfb
RAPID COMMUNICATION Prev   Next  

Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector

Jin-Rong Wang(王锦荣)1, Hong-Yu Zhang(张宏宇)1,2, Zi-Lin Zhao(赵子琳)1,2, and Yao-Hui Zheng(郑耀辉)1,3,
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; 2 Department of Electronics and Information Technology, Shanxi University, Taiyuan 030006, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We design and construct a resonant photodetector (RPD) with a Q factor of 320.83 at the resonant frequency of 38.5 MHz on the basis of a theoretical analysis. Compared with the existing RPD under the same conditions, the signal-to-noise-ratio of the error signal is increased by 15 dB and the minimum operation power is reduced from -55 dBm to -70 dBm. By comparing the standard deviations of the stability curves, we confirm that the RPD has a dramatic improvement on ultralow power extraction. In virtue of the RPD, we have completed the demonstration of channel multiplexing quantum communication.
Keywords:  quantum optics      photodetector      Q factor  
Received:  31 July 2020      Revised:  21 August 2020      Accepted manuscript online:  28 September 2020
PACS:  42.50.-p (Quantum optics)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62027821, 11654002, 11874250, and 11804207), the National Key R&D Program of China (Grant No. 2016YFA0301401), the Key R&D Program of Shanxi, China (Grant No. 201903D111001), the Program for Sanjin Scholar of Shanxi Province, the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, and the Fund for Shanxi "1331 Project" Key Subjects Construction, China.
Corresponding Authors:  Corresponding author. E-mail: yhzheng@sxu.edu.cn   

Cite this article: 

Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉) Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector 2020 Chin. Phys. B 29 124207

[1] Hou L, Han H N, Wang W, Zhang L, Pang L H, Li D H and Wei Z Y Chin. Phys. B 24 024213 DOI: 10.1088/1674-1056/24/2/0242132015
[2] Salomon C, Hils D and Hall J L J. Opt. Soc. Am. B. 5 1576 DOI: 10.1364/JOSAB.5.0015761988
[3] Fescenko I, Alnis J, Schliesser A, Wang C Y, Kippenberg T J and Hänsch T W Opt. Express 20 19185 DOI: 10.1364/OE.20.0191852012
[4] Jin X J, Lin Y, Lu Y, Ma H L and Jin Z H Appl. Opt. 57 5789 DOI: 10.1364/AO.57.0057892018
[5] Wang J Q and He L X 2018 Acta. Sin. Quantum. Opt. 24 371 (in Chinese) DOI: 10.3788/jqo20182404.0202
[6] Yu J, Qin Y, Yan Z H, Lu H D and Jia X J Opt. Express 27 3247 DOI: 10.1364/OE.27.0032472019
[7] Abramovici A, Althouse W E, Drever R W P, Gursel Y, Kawamura S J, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, Vogt R E, Weiss R, Whitcomb S E and Zucker M E Science 256 325 DOI: 10.1126/science.256.5055.3251992
[8] Liu H, Gao F, Wang Y B, Tian X, Ren J, Lu B Q, Xu Q F, Xie Y L and Chang H Chin. Phys. B 24 013201 DOI: 10.1088/1674-1056/24/1/0132012015
[9] Chow J H, McClelland D E, Gray M B and Littler I C M Opt. Lett. 30 1923 DOI: 10.1364/OL.30.0019232005
[10] Wang H M, Xu Z S, Ma S C, Cai M H, You S H and Liu H P Opt. Lett. 44 5816 DOI: 10.1364/OL.44.0058162019
[11] Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C and Zhao J M Chin. Phys. B 29 033201 DOI: 10.1088/1674-1056/ab6c492020
[12] Young B C, Cruz F C, Itano W M and Bergquist J C Phys. Rev. Lett. 82 3799 DOI: 10.1103/PhysRevLett.82.37991999
[13] Shen D N, Ding L Y, Zhang Q X, Zhu C H, Wang Y X, Zhang W and Zhang X Chin. Phys. B 29 074210 DOI: 10.1088/1674-1056/ab8c412020
[14] Spencer D T, Davenport M L, Komljenovic T, Srinivasan S and Bowers J E Opt. Express 24 13511 DOI: 10.1364/OE.24.0135112016
[15] Dai D P, Xia Y, Yin Y N, Yang X X, Fang Y F, Li X J and Yin J P Opt. Express 22 28645 DOI: 10.1364/OE.22.0286452014
[16] He Q X, Zheng C, Lou M H, Ye W L, Wang Y D and Tittel F K Opt. Express 26 15436 DOI: 10.1364/OE.26.0154362018
[17] Rafael J, Abdel-Baset M A I, Pankaj K C and Hichem E Chin. Phys. B 27 114206 DOI: 10.1088/1674-1056/27/11/1142062018
[18] Xiang S H, Zhu X X and Song K h Chin. Phys. B 27 100305 DOI: 10.1088/1674-1056/27/10/1003052018
[19] Takeno Y, Yukawa M, Yonezawa H and Furusawa A Opt. Express 15 4321 DOI: 10.1364/OE.15.0043212007
[20] Liu Q, Feng J X, Li H, Jiao Y C and Zhang K S Chin. Phys. B 21 104204 DOI: 10.1088/1674-1056/21/10/1042042012
[21] Feng Y Y, Shi R H and Guo Y Chin. Phys. B 27 020302 DOI: 10.1088/1674-1056/27/2/0203022018
[22] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H and Peng K C Opt. Lett. 42 4553 DOI: 10.1364/OL.42.0045532017
[23] Sun X C, Wang Y J, Tian L, Zheng Y H and Peng K C Chin. Opt. Lett. 17 072701 DOI: 10.3788/COL2019
[24] The LIGO Scientific Collaboration Nat. Photon. 7 613 DOI: 10.1038/nphoton.2013.1772013
[25] Dooley K L, Schreiber E, Vahlbruch H, Affeldt C, Leong J R, Wittel H and Grote H Opt. Express 23 8235 DOI: 10.1364/OE.23.0082352015
[26] Oelker E, Mansell G, Tse M, Miller J, Matichard F, Barsotti L, Fritschel P, McClelland D E, Evans M and Mavalvala N Optica 3 682 DOI: 10.1364/OPTICA.3.0006822016
[27] Black E D Am. J. Phys 69 79 DOI: 10.1119/1.12866632001
[28] Chen C Y, Li Z X, Jin X L and Zheng Y H Rev. Sci. Instrum. 88 099901 DOI: 10.1063/1.50047062017
[29] Chen C Y, Shi S P and Zheng Y H Rev. Sci. Instrum. 88 103101 DOI: 10.1063/1.50044182017
[30] Serikawa T and Furusawa A Rev. Sci. Instrum. 89 063120 DOI: 10.1063/1.50298592018
[31] Jia M Y, Zhao G, Zhou Y T, Liu J X, Guo S J, Wu Y Q, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T and Jia S T 2018 Acta. Phys. Sin. 67 104207 (in Chinese) DOI: 10.7498/aps.67.20172541
[32] Zhao G, Hausmaninger T, Ma W G and Axner O Opt. Lett. 42 3109 DOI: 10.1364/OL.42.0031092017
[33] Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D and Peng K C Phys. Rev. Lett. 125 070502 DOI: 10.1103/PhysRevLett.125.0705022020
[1] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[2] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[3] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[4] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[5] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[6] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[7] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[8] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[9] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[10] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[11] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[12] A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink. Chin. Phys. B, 2020, 29(12): 128502.
[13] Performance optimization of self-powered visible photodetectors based on Cu2O/electrolyte heterojunctions
Zhi-Ming Bai(白智明), Ying-Hua Zhang(张英华), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤), and Jia Liu(刘佳). Chin. Phys. B, 2020, 29(12): 128202.
[14] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[15] Rectifying characteristics and solar-blind photoresponse in β-Ga2O3/ZnO heterojunctions
Xiao-Fei Ma(马晓菲), Yuan-Qi Huang(黄元琪), Yu-Song Zhi(支钰崧), Xia Wang(王霞), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(8): 088503.
No Suggested Reading articles found!