Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024701    DOI: 10.1088/1674-1056/abbbf8

Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM

Yu Yang(杨雨)1, 2, Ming-Lei Shan(单鸣雷)1,†, Qing-Bang Han(韩庆邦)1, and Xue-Fen Kan(阚雪芬)1
1 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China; 2 College of Computer and Information, Hohai University, Nanjing 210000, China
Abstract  A multicomponent thermal multi-relaxation-time (MRT) lattice Boltzmann method (LBM) is presented to study collapsing cavitation bubble. The simulation results satisfy Laplace law and the adiabatic law, and are consistent with the numerical solution of the Rayleigh-Plesset equation. To study the effects of the non-condensable gas inside bubble on collapsing cavitation bubble, a numerical model of single spherical bubble near a solid wall is established. The temperature and pressure evolution of the two-component two-phase flow are well captured. In addition, the collapse process of the cavitation bubble is discussed elaborately by setting the volume fractions of the gas and vapor to be the only variables. The results show that the non-condensable gas in the bubble significantly affects the pressure field, temperature field evolution, collapse velocity, and profile of the bubble. The distinction of the pressure and temperature on the wall after the second collapse becomes more obvious as the non-condensable gas concentration increases.
Keywords:  multicomponent      cavitation bubble      non-condensable gas      lattice Boltzmann method  
Published:  26 January 2021
PACS:  47.11.Qr (Lattice gas)  
  47.55.Ca (Gas/liquid flows)  
  47.55.dd (Bubble dynamics)  
  47.55.dp (Cavitation and boiling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874140 and 11574072), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201913), the National Key Research and Development Program of China (Grant No. 2016YFC0401600), the Primary Research and Development Plan of Jiangsu Province, China (Grant No. BE2016056), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. 2018B741X14 and KYCX18_0552), and the Postgraduate Research & Practice Innovation Program of Changzhou Campus, Hohai University, China (Grant No. 17B011_10).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬) Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM 2021 Chin. Phys. B 30 024701

1 Brennen C E2005 Fundamentals of Multiphase Flow (New York: Cambridge University Press) p. 19
2 Chahine G L, Kapahi A, Choi J K and Hsiao C T 2016 Ultrason. Sonochem. 29 528
3 Li D, Kang Y and Wang X 2016 Exp. Therm. Fluid Sci. 74 444
4 Hashmi A, Yu G, Reilly-Collette M, Heiman G and Xu J 2012 Lab on Chip 12 4216
5 Koch M, Lechner C and Reuter F 2015 Comput. Fluids 126 71
6 Shan X W and Chen H D 1993 Phys. Rev. E 47 1815
7 Safari H, Rahimian M H and Krafczyk M 2013 Phys. Rev. E 88 013304
8 Zhang Q Y, Sun D K, Zhang Y F and Zhu M F 2016 Chin. Phys. B 25 066401
9 Xie H Q, Zeng Z and Zhang L Q 2016 Chin. Phys. B 25 014702
10 Chopard B, Falcone J L and Latt J 2009 Eur. Phys. J. Spec. Top. 171 245
11 Yoshida H and Nagaoka M 2010 J. Comput. Phys. 229 7774
12 Chai Z H, Shi B C and Guo Z L 2016 J. Sci. Comput. 69 355
13 Gan Y, Xu A, Zhang G and Succi S 2015 Soft Matter 11 5336
14 He X, Chen S and Doolen G D 1998 J. Comput. Phys. 146 282
15 Liu Q and He Y L 2015 Physica A 438 94
16 Li Q, Kang Q J, Francois M M, He Y L and Luo K H 2015 Int. J. Heat Mass Transfer 85 787
17 Lallemand P and Luo L S 2003 Int. J. Mod. Phys. B 17 41
18 Zhang R and Chen H 2003 Phys. Rev. E 67 066711
19 Gong S and Cheng P A 2012 Int. J. Heat Mass Transfer 55 4923
20 Shan X 2010 Phys. Rev. E 81 045701
21 Porter M L, Coon E T, Kang Q, Moulton J D and Carey J W 2012 Phys. Rev. E 86 036701
22 Bao J and Schaefer L 2013 Appl. Math. Model. 37 1860
23 Qiu R F, Wang A L and Jiang T 2014 Can. J. Chem. Eng. 92 1121
24 Ikeda M K, Rao P R and Schaefer L A 2014 Comput. Fluids 101 250
25 Zhu B W, Wang M and Chen H 2017 Int. Commun. Heat Mass Transfer 87 183
26 Hou Y, Deng H and Du Q 2018 J. Power Sources 393 83
27 Chai Z H and Zhao T S 2012 Acta Mech. Sin. 28 983
28 Zhang Q Y, Sun D K and Zhu M F 2017 Chin. Phys. B 26 084701
29 Yang Y, Shan M L, Kan X F, Shangguan Y Q and Han Q B 2020 Ultrason. Sonochem. 62 104873
30 Akhatov I, Lindau O and Topolnikov 2001 Phys. Fluids 13 2805
31 Narayan G P, Sharqawy M H and Lam S 2013 AIChE J. 59 1780
32 Luo L S and Lallemand P 2000 Phys. Rev. E 61 6546
33 D'Humieres D, Ginzburg I, Krafczyk M, Lallemand P and Luo L S 2002 Philos. Trans. R. Soc. Lond. A 360 437
34 Mohamad A2011 The Lattice Boltzamnn Method (New York: Springer International Publishing) pp. 155-175
35 Li T, Wang S, Li S and Zhang A M 2018 Appl. Ocean. Res. 74 49
36 Guo Z L, Asinari P and Zheng C 2009 Phys. Rev. E 79 026702
37 Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K and Toschi F 2007 Phys. Rev. E 75 026702
38 Yuan P and Schaefer L 2006 Phys. Fluids 18 329
39 Yu Z and Fan L S 2010 Phys. Rev. E 82 046708
40 Li Q, Luo K H and Li X J 2012 Phys. Rev. E 86 016709
41 Guo Z, Shi B and Zheng C 2002 Int. J. Numer. Meth. Fl. 39 325
42 Li Q, Zhou P and Yan H J 2017 Phys. Rev. E 96 06330
43 Shan M L, Zhu C P, Zhou X, Yin C and Han Q B 2016 J. Hydrodyn. Ser. B 28 442
44 Shan M L, Yang Y, Peng H, Han Q B and Zhu C P 2017 Proc. Inst. Mech. Eng. C 232 445
45 Shan M L, Zhu C P, Yao C, Yin C and Jiang X Y 2016 Chin. Phys. B 25 104701
[1] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[2] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[3] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[4] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
[5] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[6] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[7] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[8] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[9] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[10] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai, Zhong Cheng-Wen. Chin. Phys. B, 2015, 24(5): 050501.
[11] Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term
Song Bao-Wei, Ren Feng, Hu Hai-Bao, Huang Qiao-Gao. Chin. Phys. B, 2015, 24(1): 014703.
[12] Simulation of fluid-structure interaction in a microchannel using the lattice Boltzmann method and size-dependent beam element on a graphics processing unit
Vahid Esfahanian, Esmaeil Dehdashti, Amir Mehdi Dehrouye-Semnani. Chin. Phys. B, 2014, 23(8): 084702.
[13] Multi-relaxation time lattice Boltzmann simulation of inertial secondary flow in a curved microchannel
Sun Dong-Ke, Xiang Nan, Jiang Di, Chen Ke, Yi Hong, Ni Zhong-Hua. Chin. Phys. B, 2013, 22(11): 114704.
[14] Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice
Cui Guo-Dong, Sun Jian-Fang, Jiang Bo-Nan, Qian Jun, Wang Yu-Zhu. Chin. Phys. B, 2013, 22(10): 100501.
[15] Multi-relaxation-time lattice Boltzmann front tracking method for two-phase flow with surface tension
Xie Hai-Qiong, Zeng Zhong, Zhang Liang-Qi, Liang Gong-You, Hiroshi Mizuseki, Yoshiyuki Kawazoe. Chin. Phys. B, 2012, 21(12): 124703.
No Suggested Reading articles found!