Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117503    DOI: 10.1088/1674-1056/abbbf2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction

Jia Lu(芦佳)1, Yu-Lin Gan(甘渝林)1, Yun-Lin Lei(雷蕴麟)2, Lei Yan(颜雷)1, †, and Hong Ding(丁洪)1,3,4$
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China
2 College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
3 Department of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

EuS is one of typical ferromagnetic semiconductor using as spin filter in spintronic devices, and the doped one could be a good spin injector. Herein, we fabricate a spin-functional tunnel junction by epitaxially growing the ferromagnetic EuS film on Nb-doped SrTiO3. The improvement of Curie temperature up to 35 K is associated with indirect exchange through additional charge carriers at the interface of EuS/Nb:STO junction. Its magnetic field controlled current–voltage curves indicate the large magnetoresistance (MR) effect in EuS barriers as a highly spin-polarized injector. The negative MR is up to 60% in 10-nm EuS/Nb:STO at 4 T and 30 K. The MR is enhanced with increasing thickness of EuS barrier. The large negative MR effect over a wide temperature range makes this junction into a potential candidate for spintronic devices.

Keywords:  EuS/Nb:SrTiO3 tunnel junction      spin filter      magnetoresistance  
Received:  21 July 2020      Revised:  10 September 2020      Accepted manuscript online:  28 September 2020
Fund: the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB07000000), the National Key Research and Development Program of China (Grant No. 2016YFA0300600), and the Fund from the Beijing Municipal Science & Technology Commission (Grant No. Z191100007219012).
Corresponding Authors:  Corresponding author. E-mail: lyan@iphy.ac.cn   

Cite this article: 

Jia Lu(芦佳), Yu-Lin Gan(甘渝林), Yun-Lin Lei(雷蕴麟), Lei Yan(颜雷), and Hong Ding(丁洪)$ Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction 2020 Chin. Phys. B 29 117503

Fig. 1.  

(a) The cross-section structure of the EuS/Nb:STO junction; (b) the typical XRD pattern of EuS thin film grown on Nb:STO (100) substrate.

Fig. 2.  

(a) The in-plane magnetization hysteresis loops of the EuS (10 nm)/Nb:STO junction measured at 2 K; (b) temperature dependences of the normalized magnetization of epitaxial EuS films grown on Nb:STO and STO substrates, respectively, recorded for magnetic field 3-mT applied parallel to the film surface.

Fig. 3.  

(a) IV characteristics of EuS/Nb:STO in zero magnetic field at various temperature; (b) IV characteristics of EuS/Nb:STO in various magnetic field at 30 K.

Fig. 4.  

(a) The temperature dependence of resistivity of 10-nm EuS/Nb:STO junction measured in various magnetic field, the sharp decrease of R indicates the onset of ferromagnetic transition; (b) magnetoresistance of the EuS/Nb:STO junction as a function of magnetic field at various temperature; the hysteretic behavior displayed at T = 8 K.

Fig. 5.  

(a) RT curve and (b) magnetoresistance (at 30 K) of the junction with EuS barrier of 10 nm, 24 nm, and 45 nm.

[1]
Prinz G A 1998 Science 282 1660 DOI: 10.1126/science.282.5394.1660
[2]
Gupta A, Sun J Z 1999 J. Magn. Magn. Mater. 200 24 DOI: 10.1016/S0304-8853(99)00373-X
[3]
R J S Jr. Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85 DOI: 10.1126/science.282.5386.85
[4]
Moodera J S, Santos T S, Nagahama T 2007 J. Phys.: Condens. Matter 19 165202 DOI: 10.1088/0953-8984/19/16/165202
[5]
Nagahama T, Santos T S, Moodera J S 2007 Phys Rev Lett. 99 016602 DOI: 10.1103/PhysRevLett.99.016602
[6]
Senapati K, Blamire M G, Barber Z H 2011 Nat. Mater. 10 849 DOI: 10.1038/nmat3116
[7]
McGuire T R, Argyle B E, Shafer M W, Smart J S 1962 Appl. Phys. Lett. 1 17 DOI: 10.1063/1.1777353
[8]
VanHouten S 1962 Phys. Lett. 2 215 DOI: 10.1016/0031-9163(62)90231-7
[9]
Wachter P 1979 Handbook on the Physics and Chemistry of Rare Earths Elsevier 507 574 DOI: 10.1016/S0168-1273(79)02010-9
[10]
Mauger A., Godart C 1986 Phys. Rep. 141 51 DOI: 10.1016/0370-1573(86)90139-0
[11]
Zinn W 1976 J. Magn. Magn. Mater. 3 23 DOI: 10.1016/0304-8853(76)90007-X
[12]
Esaki L, Stiles P J, Molnar S v 1967 Phys. Rev. Lett. 19 852 DOI: 10.1103/PhysRevLett.19.852
[13]
Moodera J S, Hao X, Gibson G A, Meservey R 1988 Phys. Rev. Lett. 61 637 DOI: 10.1103/PhysRevLett.61.637
[14]
Santos T S, Moodera J S, Raman K V, Negusse E, Holroyd J, Dvorak J, Liberati M, Idzerda Y U, Arenholz E 2008 Phys. Rev. Lett. 101 147201 DOI: 10.1103/PhysRevLett.101.147201
[15]
Muller M, Schreiber R, Schneider C M 2011 IEEE Trans. Magn. 47 1635 DOI: 10.1109/TMAG.2011.2106767
[16]
Caspers C, Müller M, Gray A X, Kaiser A M, Gloskovskii A, Fadley C S, Drube W, Schneider C M 2011 Phys. Rev. B 84 205217 DOI: 10.1103/PhysRevB.84.205217
[17]
Panguluri R P, Santos T S, Negusse E, Dvorak J, Idzerda Y, Moodera J S, Nadgorny B 2008 Phys. Rev. B 78 125307 DOI: 10.1103/PhysRevB.78.125307
[18]
Fumagalli P, Schirmeisen A, Gambino R J 1998 Phys. Rev. B 57 57 DOI: 10.1103/PhysRev.57.57
[19]
Ren C, Trbovic J, Xiong P, von Molnár S 2005 Appl. Phys. Lett. 86 012501 DOI: 10.1063/1.1842857
[20]
Guilaran I J, Read D E, Kallaher R L, Xiong P, von Molnár S, Stampe P A, Kennedy R J, Keller J 2003 Phys. Rev. B 68 144424 DOI: 10.1103/PhysRevB.68.144424
[21]
Hao X, Moodera J S, Meservey R 1990 Phys. Rev. B 42 8235 DOI: 10.1103/PhysRevB.42.8235
[22]
O’Mahony D, Smith C, Budtz-Jorgensen C, Venkatesan M, Lunney J G, McGilp J F, Coey J M D 2005 Thin Solid Films 488 200 DOI: 10.1016/j.tsf.2005.04.081
[23]
Yang Q I, Zhao J, Zhang L, Dolev M, Fried A D, Marshall A F, Risbud S H, Kapitulnik A 2014 Appl. Phys. Lett. 104 082402 DOI: 10.1063/1.4866265
[24]
Stachow-Wójcik A, Story T, Dobrowolski W, Arciszewska M, Gałąka R R, Kreijveld M W, Swüste C H W, Swagten H J M, de Jonge W J M, Twardowski A, Sipatov A Y 1999 Phys. Rev. B 60 15220 DOI: 10.1103/PhysRevB.60.15220
[25]
Demokritov S, Rticker U, Grtinberg P 1996 J. Magn. Magn. Mater. 163 21 DOI: 10.1016/S0304-8853(96)00318-6
[26]
Li X L, Xu X H 2019 Chin. Phys. B 28 098506 DOI: 10.1088/1674-1056/ab38ac
[27]
Ziese M, Köhler U, Bollero A, Höhne R, Esquinazi P 2005 Phys. Rev. B 71 180406 DOI: 10.1103/PhysRevB.71.180406
[28]
Shapira Y, Reed T B 1972 Phys. Rev. B 5 4877 DOI: 10.1103/PhysRevB.5.4877
[29]
De Gennes P G, Friedel J 1958 J. Phys. Chem. Solids 4 71 DOI: 10.1016/0022-3697(58)90196-3
[30]
Lomicronpez-Mir L, Frontera C, Aramberri H, Bouzehouane K, Cisneros-Fernandez J, Bozzo B, Balcells L, Martinez B 2018 Sci. Rep. 8 861 DOI: 10.1038/s41598-017-19129-5
[31]
O’Donnell J, Onellion M, Rzchowski M S, Eckstein J N, Bozovic I 1997 Phys. Rev. B 55 5873 DOI: 10.1103/PhysRevB.55.5873
[32]
Thompson W A, Holtzberg F, McGuire T R, Petrich G 1972 Magn. Magn. Mater. AIP Conf. Proc. 5 827 DOI: 10.1063/1.2953924
[33]
Zhu L Q, Lin T, Guo S L, Chu J H 2012 Acta Phys. Sin 61 087501 in Chinese DOI: 10.7498/aps.61.087501
[34]
Müller M, Schreiber R, Schneider C M 2011 J. Appl. Phys. 109 07C710 DOI: 10.1063/1.3549609
[35]
Pan L F, Wen H Y, Huang L, Chen L, Deng H X, Xia J B, Wei Z M 2019 Chin. Phys. B 28 107504 DOI: 10.1088/1674-1056/ab3e45
[36]
Butler W H, Zhang X G, Schulthess T C, MacLaren J M 2001 Phys. Rev. B 63 054416 DOI: 10.1103/PhysRevB.63.054416
[1] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[2] Anomalous magnetoresistance in detwinned EuFe2As2
Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太). Chin. Phys. B, 2020, 29(7): 077402.
[3] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[4] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[5] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[6] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[7] Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor
Jiao-Feng Zhang(张教凤), Zheng-Hong Qian(钱正洪), Hua-Chen Zhu(朱华辰), Ru Bai(白茹), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2019, 28(8): 087501.
[8] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[9] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[10] Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect
Bao-Rui Huang(黄保瑞), Fu-Chun Zhang(张富春), Yan-Ning Yang(杨延宁), Zhi-Yong Zhang(张志勇), Wei-Guo Wang(王卫国). Chin. Phys. B, 2019, 28(10): 108503.
[11] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[12] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[13] Room-temperature large photoinduced magnetoresistance in semi-insulating gallium arsenide-based device
Xiong He(何雄), Zhi-Gang Sun(孙志刚). Chin. Phys. B, 2018, 27(6): 067204.
[14] Spin Seebeck effect and spin Hall magnetoresistance in the Pt/Y3Fe5O12 heterostructure under laser-heating
Shuanhu Wang(王拴虎), Gang Li(李刚), Jianyuan Wang(王建元), Yingyi Tian(田颖异), Hongrui Zhang(张洪瑞), Lvkuan Zou(邹吕宽), Jirong Sun(孙继荣), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117201.
[15] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
No Suggested Reading articles found!