Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026102    DOI: 10.1088/1674-1056/abbbe0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective

Jiting Tian(田继挺)†
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Primary radiation damage in hcp Zr, including both defect production in a single collision cascade and damage buildup through cascade overlap, is investigated using molecular dynamics (MD) simulations from a potential energy landscape (PEL) perspective. It is found that the material's response to an energetic particle can be understood as a trajectory in the PEL comprising a fast uphill journey and a slow downhill one. High-temperature-induced damage reduction and the difference in the radiation tolerance between metals and semiconductors can be both qualitatively explained by the dynamics of the trajectory associated with the topographic features of the system's PEL. Additionally, by comparing irradiation and heating under a nearly identical condition, we find that large atomic displacements stemming from the extreme locality of the energy deposition in irradiation events are the key factor leading to radiation damage in a solid. Finally, we discuss the advantages of the PEL perspective and suggest that a combination of the PEL and the traditional crystallographic methods may provide more insights in future work.
Keywords:  displacement cascades      molecular dynamics      potential energy landscape      metals  
Received:  22 August 2020      Revised:  20 September 2020      Accepted manuscript online:  28 September 2020
PACS:  61.82.-d (Radiation effects on specific materials)  
  61.80.Jh (Ion radiation effects)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  61.72.Bb (Theories and models of crystal defects)  
Corresponding Authors:  Corresponding author. E-mail: tianjiting@pku.edu.cn   

Cite this article: 

Jiting Tian(田继挺) Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective 2021 Chin. Phys. B 30 026102

1 De La Rubia T D, Averback R, Benedek R and King W 1987 Phys. Rev. Lett. 59 1930
2 De La Rubia T D and Guinan M 1991 Phys. Rev. Lett. 66 2766
3 Nordlund K and Averback R 1997 Phys. Rev. B 56 2421
4 Nordlund K, Ghaly M, Averback R, Caturla M, de La Rubia T D and Tarus J 1998 Phys. Rev. B 57 7556
5 de la Rubia T D, Zbib H M, Khraishi T A, Wirth B D, Victoria M and Caturla M J 2000 Nature 406 871
6 Fu C C, Dalla Torre J, Willaime F, Bocquet J L and Barbu A 2005 Nat. Mater. 4 68
7 Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
8 Stoller R2012 Comprehensive Nuclear Materials (Elsevier) 1 293
9 Zinkle S J and Was G 2013 Acta Mater. 61 735
10 Zinkle S J and Snead L L 2014 Ann. Rev. Mater. Res. 44 241
11 Nordlund K and Djurabekova F 2014 J. Comput. Electron. 13 122
12 Krishnan N A, Wang B, Yu Y, Le Pape Y, Sant G and Bauchy M 2017 Phys. Rev. X 7 031019
13 Krasheninnikov A and Nordlund K 2010 J. Appl. Phys. 107 3
14 Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A 2014 J. Phys. D: Appl. Phys. 47 224018
15 Kinchin G and Pease R 1995 Rep. Prog. Phys. 18 1
16 Sigmund P and Claussen C 1981 J. Appl. Phys. 52 990
17 Wang Z, Dufour C, Paumier E and Toulemonde M 1994 J. Phys.: Condens. Matter 6 6733
18 Schaublin R and Gotthardt R 1996 Philos. Mag. A 74 593
19 Calder A, Bacon D J, Barashev A V and Osetsky Y N 2010 Philos. Mag. 90 863
20 Korchuganov A, Zolnikov K, Kryzhevich D, Chernov V and Psakhie S G 2015 Nucl. Instrum. Methods Phys. Res. B 352 39
21 Stillinger F H 1995 Science 267 1935
22 Sastry S, Debenedetti P G and Stillinger F H 1998 Nature 393 554
23 Debenedetti P G and Stillinger F H 2001 Nature 410 259
24 Frauenfelder H, Sligar S G and Wolynes P G 1991 Science 254 1598
25 Wang J, Onuchic J and Wolynes P 1996 Phys. Rev. Lett. 76 4861
26 Becker O M and Karplus M 1997 J. Chem. Phys. 106 1495
27 Lacks D J 1998 Phys. Rev. Lett. 80 5385
28 Fan Y, Osetskiy Y N, Yip S and Yildiz B 2013 Proc. Nat. Acad. Sci. USA 110 17756
29 Fan Y, Iwashita T and Egami T 2014 Nat. Commun. 5 5083
30 Plimpton S 1995 J. Comput. Phys. 117 1
31 Zhou W, Tian J, Zheng J, Xue J and Peng S 2016 Sci. Rep. 6 21034
32 Tian J, Zhou W, Feng Q and Zheng J 2018 Appl. Surf. Sci. 435 65
33 Zhou W, Tian J, Feng Q, Zheng J, Liu X, Xue J, Qian D and Peng S 2018 J. Nucl. Mater. 508 540
34 Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
35 Gao F and Weber W J 2002 Phys. Rev. B 66 024106
36 Granberg F, Byggmastar J, Sand A and Nordlund K 2017 Europhys. Lett. 119 56003
37 Zhang S, Nordlund K, Djurabekova F, Granberg F, Zhang Y and Wang T 2017 Mater. Res. Lett. 5 433
38 Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L, Djurabekova F, Weber W and Zhang Y 2016 Phys. Rev. Lett. 116 135504
39 Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Design 33 50
40 Idrees Y, Yao Z, Kirk M and Daymond M 2013 J. Nucl. Mater. 433 95
41 Yu H, Yao Z, Idrees Y, Zhang H K, Kirk M A and Daymond M R 2017 J. Nucl. Mater. 491 232
42 Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
43 Grippo L and Lucidi S 1997 Mathematical Programming 78 375
44 Gao F, Bacon D, Howe L and So C 2001 J. Nucl. Mater. 294 288
45 Fan Y, Kushima A, Yip S and Yildiz B 2011 Phys. Rev. Lett. 106 125501
46 Fan Y, Yip S and Yildiz B 2014 J. Phys.: Condens. Matter 26 365402
47 Averback R, Benedek R and Merkle K 1978 Phys. Rev. B 18 4156
48 Zhong L, Wang J, Sheng H, Zhang Z and Mao S X 2014 Nature 512 177
49 Race C, Mason D, Finnis M, Foulkes W, Horsfield A and Sutton A 2010 Rep. Prog. Phys. 73 116501
50 Nordlund K, Zinkle S J, Sand A E, et al. 2018 Nat. Commun. 9 1084
51 Simeone D and Luneville L 2010 Phys. Rev. E 81 021115
52 Boulle A and Debelle A 2016 Phys. Rev. Lett. 116 245501
53 Uberuaga B, Hoagland R, Voter A and Valone S 2007 Phys. Rev. Lett. 99 135501
[1] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[2] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[3] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[4] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[5] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[6] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[7] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[8] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[9] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[10] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[11] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[12] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[13] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[14] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[15] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
No Suggested Reading articles found!