Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117302    DOI: 10.1088/1674-1056/abbbdf
RAPID COMMUNICATION Prev   Next  

Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures

Hai-Bin Shi(石海滨)1,2, Li-Qin Yan(闫丽琴)1,2, Yang-Tao Su(苏仰涛)1,2, Li Wang(王力)1,2, Xin-Yu Cao(曹昕宇)1,2, Lin-Zhu Bi(毕林竹)1,2, Yang Meng(孟洋)1,2, Yang Sun(孙阳)1,2, and Hong-Wu Zhao(赵宏武)1,2,3, †
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  

We investigate the modulation of magnetic anisotropy of thulium iron garnet (TmIG) films by interfaced Bi2Se3 thin films. High quality epitaxial growth of Bi2Se3 films has been achieved by molecular beam epitaxy on TmIG films. By the method of ferromagnetic resonance, we find that the perpendicular magnetic anisotropy (PMA) of TmIG can be greatly strengthened by the adjacent Bi2Se3 layer. Moreover, the competition between topological surface states and thickness dependent bulk states of Bi2Se3 gives rise to the modulation of PMA of the Bi2Se3/TmIG heterostructures. The interfacial interaction can be attributed to the enhanced exchange coupling between Fe3+ ions of TmIG mediated by topological surface electrons of Bi2Se3.

Keywords:  topological surface states      interfacial exchange coupling      perpendicular magnetic anisotropy  
Received:  12 August 2020      Revised:  16 September 2020      Accepted manuscript online:  28 September 2020
Fund: the National Key Basic Research Project of China (Grant No. 2016YFA0300600), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33020300), and the National Natural Science Foundation of China (Grant Nos. 11604375 and 11874416).
Corresponding Authors:  Corresponding author. E-mail: hwzhao@iphy.ac.cn   

Cite this article: 

Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武) Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures 2020 Chin. Phys. B 29 117302

Fig. 1.  

(a) The 2θω XRD scan of a TmIG (22 nm) film. (b) Hysteresis loop of a TmIG film (35 nm) with out-of-plane applied field. Inset: the in-plane hysteresis loop. (c) RHEED patterns of TmIG (12 nm), and (d) Bi2Se3 (8 nm)/TmIG (12 nm).

Fig. 2.  

(a) FMR derivative absorption spectra of TmIG (12 nm), TmIG (12 nm)/Bi2Se3 (6 nm), and TmIG (12 nm)/Pt (6 nm) with out-of-plane applied magnetic fields. (b) FMR spectra of TmIG (12 nm)/Bi2Se3 (6 nm) as H is rotated from the film normal (θH = 0°) to in-plane (θH = 90°). (c) θH dependence of Hres for TmIG (12 nm),TmIG (12 nm)/Bi2Se3 (6 nm), and TmIG (12 nm)/Pt (6 nm). The points are experimental data and the solid lines represent the theoretical fit. (d) The tBS dependence of Ha for TmIG (12 nm)/Bi2Se3 (tBS) heterostructures. The upper and lower dashed lines show the Ha values of TmIG (12 nm) and TmIG (12 nm)/Pt (6 nm), respectively.

Fig. 3.  

Temperature dependence of Ha for TmIG (12 nm), TmIG (12 nm)/Bi2Se3 (6 nm), TmIG (12 nm)/Bi2Se3 (12 nm), and TmIG (12 nm)/Pt (6 nm), respectively.

[1]
Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057 DOI: 10.1103/RevModPhys.83.1057
[2]
Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P, Moodera J S 2016 Nature 533 513 DOI: 10.1038/nature17635
[3]
Li M, Song Q, Zhao W, Garlow J A, Liu T H, Wu L, Zhu Y, Moodera J S, Chan M H W, Chen G, Chang C Z 2017 Phys. Rev. B 96 201301 DOI: 10.1103/PhysRevB.96.201301
[4]
Watanabe R, Yoshimi R, Kawamura M, Mogi M, Tsukazaki A, Yu X Z, Nakajima K, Takahashi K S, Kawasaki M, Tokura Y 2019 Appl. Phys. Lett. 115 102403 DOI: 10.1063/1.5111891
[5]
Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424 DOI: 10.1103/PhysRevB.78.195424
[6]
Kim J, Kim K W, Wang H, Sinova J, Wu R 2017 Phys. Rev. Lett. 119 027201 DOI: 10.1103/PhysRevLett.119.027201
[7]
Fanchiang Y T, Chen K H M, Tseng C C, Chen C C, Cheng C K, Yang S R, Wu C N, Lee S F, Hong M, Kwo J 2018 Nat. Commun. 9 223 DOI: 10.1038/s41467-017-02743-2
[8]
Tang C, Song Q, Chang C Z, Xu Y, Ohnuma Y, Matsuo M, Liu Y, Yuan W, Yao Y, Moodera J S, Maekawa S, Han W, Shi J 2018 Sci. Adv. 4 eaas8660 DOI: 10.1126/sciadv.aas8660
[9]
Liu T, Kally J, Pillsbury T, Liu C, Chang H, Ding J, Cheng Y, Hilse M, Engel-Herbert R, Richardella A, Samarth N, Wu M 2020 Phys. Rev. Lett. 125 017204 DOI: 10.1103/PhysRevLett.125.017204
[10]
Landolt G, Schreyeck S, Eremeev S V, Slomski B, Muff S, Osterwalder J, Chulkov E V, Gould C, Karczewski G, Brunner K, Buhmann H, Molenkamp L W, Dil J H 2014 Phys. Rev. Lett. 112 057601 DOI: 10.1103/PhysRevLett.112.057601
[11]
Chen C C, Chen K H M, Fanchiang Y T, Tseng C C, Yang S R, Wu C N, Guo M X, Cheng C K, Huang S W, Lin K Y, Wu C T, Hong M, Kwo J 2019 Appl. Phys. Lett. 114 031601 DOI: 10.1063/1.5054329
[12]
Yang C Y, Lee Y H, Ou Yang K H, Chiu K C, Tang C, Liu Y, Zhao Y F, Chang C Z, Chang F H, Lin H J, Shi J, Lin M T 2019 Appl. Phys. Lett. 114 082403 DOI: 10.1063/1.5083931
[13]
Makino H, Hidaka Y 1981 Mater. Res. Bull. 16 957 DOI: 10.1016/0025-5408(81)90137-9
[14]
Kakazei G N, Wigen P E, Guslienko K Y, Chantrell R W, Lesnik N A, Metlushko V, Shima H, Fukamichi K, Otani Y, Novosad V 2003 J. Appl. Phys. 93 8418 DOI: 10.1063/1.1556978
[15]
Wu C N, Tseng C C, Lin K Y, Cheng C K, Yeh S L, Fanchiang Y T, Hong M, Kwo J 2018 AIP Adv. 8 055904 DOI: 10.1063/1.5006673
[16]
Semenov Y G, Duan X, Kim K W 2012 Phys. Rev. B 86 161406 DOI: 10.1103/PhysRevB.86.161406
[17]
Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584 DOI: 10.1038/nphys1689
[18]
Neupane M, Richardella A, Sànchez-Barriga J, Xu S, Alidoust N, Belopolski I, Liu C, Bian G, Zhang D, Marchenko D, Varykhalov A, Rader O, Leandersson M, Balasubramanian T, Chang T R, Jeng H T, Basak S, Lin H, Bansil A, Samarth N, Hasan M Z 2014 Nat. Commun. 5 1 DOI: 10.1038/ncomms4841
[19]
Wang H, Kally J, Lee J S, Liu T, Chang H, Hickey D R, Mkhoyan K A, Wu M, Richardella A, Samarth N 2016 Phys. Rev. Lett. 117 076601 DOI: 10.1103/PhysRevLett.117.076601
[20]
Taskin A A, Sasaki S, Segawa K, Ando Y 2012 Phys. Rev. Lett. 109 066803 DOI: 10.1103/PhysRevLett.109.066803
[21]
He L, Xiu F, Yu X, Teague M, Jiang W, Fan Y, Kou X, Lang M, Wang Y, Huang G, Yeh N C, Wang K L 2012 Nano Lett. 12 1486 DOI: 10.1021/nl204234j
[22]
Quindeau A, Avci C O, Liu W, Sun C, Mann M, Tang A S, Onbasli M C, Bono D, Voyles P M, Xu Y, Robinson J, Beach G S D, Ross C A 2017 Adv. Electron. Mater. 3 1600376 DOI: 10.1002/aelm.201600376
[23]
Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202 DOI: 10.1103/PhysRevLett.114.257202
[24]
Shao Q, Grutter A, Liu Y, Yu G, Yang C Y, Gilbert D A, Arenholz E, Shafer P, Che X, Tang C, Aldosary M, Navabi A, He Q L, Kirby B J, Shi J, Wang K L 2019 Phys. Rev. B 99 104401 DOI: 10.1103/PhysRevB.99.104401
[25]
Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J, Wang K L 2019 Nat. Electron. 2 182 DOI: 10.1038/s41928-019-0246-x
[26]
Yang S R, Fanchiang Y T, Chen C C, Tseng C C, Liu Y C, Guo M X, Hong M, Lee S F, Kwo J 2019 Phys. Rev. B 100 045138 DOI: 10.1103/PhysRevB.100.045138
[1] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[2] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[3] Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure
Yi Liu(刘毅), Kai-Gui Zhu(朱开贵), Hui-Cai Zhong(钟汇才), Zheng-Yong Zhu(朱正勇), Tao Yu(于涛), Su-De Ma(马苏德). Chin. Phys. B, 2016, 25(11): 117805.
[4] Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes
Su Yuan-Chang, Lei Hai-Yang, Hu Jing-Guo. Chin. Phys. B, 2015, 24(9): 097506.
[5] Perpendicular magnetic tunnel junction and its application in magnetic random access memory
Liu Hou-Fang, Syed Shahbaz Ali, Han Xiu-Feng. Chin. Phys. B, 2014, 23(7): 077501.
[6] Anomalous Hall effect in perpendicular CoFeB thin films
Zhu Tao. Chin. Phys. B, 2014, 23(4): 047504.
[7] Tunable interface anisotropy in Pt/Co1-xFex/Pt multilayer
Chen Yong-Yong, Shi Zhong, Zhou Shi-Ming, Rui Wen-Bin, Du Jun. Chin. Phys. B, 2013, 22(6): 067504.
[8] Strong perpendicular magnetic anisotropy in Co2FeAl0.5Si0.5 film sandwiched by MgO layers
Wang Sheng, Li Xiao-Qi, Bai Li-Juan, Xu Xiao-Guang, Miao Jun, Jiang Yong. Chin. Phys. B, 2013, 22(5): 057305.
[9] Recent progress in perpendicularly magnetized Mn-based binary alloy films
Zhu Li-Jun, Nie Shuai-Hua, Zhao Jian-Hua. Chin. Phys. B, 2013, 22(11): 118505.
[10] Magnetic properties of a Pt/Co2FeAl/MgO structure with perpendicular magnetic anisotropy
Li Xiao-Qi, Xu Xiao-Guang, Wang Sheng, Wu Yong, Zhang De-Lin, Miao Jun, Jiang Yong. Chin. Phys. B, 2012, 21(10): 107307.
No Suggested Reading articles found!