Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028502    DOI: 10.1088/1674-1056/abb7f6
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance analysis of GaN-based high-electron-mobility transistors with postpassivation plasma treatment

Xing-Ye Zhou(周幸叶), Xin Tan(谭鑫), Yuan-Jie Lv(吕元杰)†, Guo-Dong Gu(顾国栋), Zhi-Rong Zhang(张志荣), Yan-Min Guo(郭艳敏), Zhi-Hong Feng(冯志红)‡, and Shu-Jun Cai(蔡树军)§
National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Abstract  AlGaN/GaN high-electron-mobility transistors (HEMTs) with postpassivation plasma treatment are demonstrated and investigated for the first time. The results show that postpassivation plasma treatment can reduce the gate leakage and enhance the drain current. Comparing with the conventional devices, the gate leakage of AlGaN/GaN HEMTs with postpassivation plasma decreases greatly while the drain current increases. Capacitance-voltage measurement and frequency-dependent conductance method are used to study the surface and interface traps. The mechanism analysis indicates that the surface traps in the access region can be reduced by postpassivation plasma treatment and thus suppress the effect of virtual gate, which can explain the improvement of DC characteristics of devices. Moreover, the density and time constant of interface traps under the gate are extracted and analyzed.
Keywords:  GaN      HEMT      gate leakage      trapping effect  
Published:  26 January 2021
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.61.Ey (III-V semiconductors)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674130 and 61804139).
Corresponding Authors:  Corresponding author. E-mail: yuanjielv@163.com Corresponding author. E-mail: ga917vv@163.com §Corresponding author. E-mail: ececai@126.com   

Cite this article: 

Xing-Ye Zhou(周幸叶), Xin Tan(谭鑫), Yuan-Jie Lv(吕元杰), Guo-Dong Gu(顾国栋), Zhi-Rong Zhang(张志荣), Yan-Min Guo(郭艳敏), Zhi-Hong Feng(冯志红), and Shu-Jun Cai(蔡树军) Performance analysis of GaN-based high-electron-mobility transistors with postpassivation plasma treatment 2021 Chin. Phys. B 30 028502

1 Wu Y F, Saxler A, Moore M, et al. 2004 IEEE Electron Dev. Lett. 25 117
2 Hao Y, Yang L, Ma X H, et al. 2011 IEEE Electron Dev. Lett. 32 626
3 Pengelly R S, Wood S M, Milligan J W, et al. 2012 IEEE Trans. Microw. Theory Tech. 60 1764
4 Marti D, Tirelli S, Alt A R, et al. 2012 IEEE Electron Dev. Lett. 33 1372
5 Sanabria C, Chakraborty A, Xu H T, et al. 2006 IEEE Electron Dev. Lett. 27 19
6 Chung J W, Roberts J C, Piner E L, et al. 2008 IEEE Electron Dev. Lett. 29 1196
7 Xia L, Hanson A, Boles T, et al. 2013 Appl. Phys. Lett. 102 113510
8 Arslan E, B\"ut\"un S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
9 Yan D, Lu H, Cao D, et al. 2010 Appl. Phys. Lett. 97 153503
10 Liu Z H, Ng G I, Arulkumaran S, et al. 2011 Appl. Phys. Lett. 98 163501
11 Hanna M J, Zhao H,Lee J C 2012 Appl. Phys. Lett. 101 153504
12 Turuvekere S, Karumuri N, Rahman A A, et al. 2013 IEEE Trans. Electron Dev. 60 3157
13 Zhu J J, Ma X H, Hou B, et al. 2014 Appl. Phys. Lett. 104 153510
14 Dutta G, DasGupta N and DasGupta A 2017 IEEE Trans. Electron Dev. 64 3609
15 Sun Z H, Huang H L, Wang R H, et al. 2020 IEEE Electron Dev. Lett. 41 135
16 Cui X, Cheng W J, Hua Q L, et al. 2020 Nano Energy 68 104361
17 Bai L, Yan W, Li Z F, et al. 2016 Chin. Phys. Lett. 33 067201
18 Zhou X, Wang Y, Tan X, et al. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, June 12-14, 2019, Xi'an, China
19 Zhao Z J, Lin Z J, Corrigan T D, et al. 2007 Appl. Phys. Lett. 91 173507
20 Lv Y J, Feng Z H, Gu G D, et al. 2015 Chin. Phys. B 24 087306
21 Zhu J J, Ma X H, Xie Y, et al. 2015 IEEE Trans. Electron Dev. 62 512
22 Lu X, Yu K, Jiang H, et al. 2017 IEEE Trans. Electron Dev. 64 824
[1] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[2] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[3] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[4] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[5] Analysis of the decrease of two-dimensional electron gas concentration in GaN-based HEMT caused by proton irradiation
Jin-Jin Tang(汤金金), Gui-Peng Liu(刘贵鹏), Jia-Yu Song(宋家毓), Gui-Juan Zhao(赵桂娟), and Jian-Hong Yang(杨建红). Chin. Phys. B, 2021, 30(2): 027303.
[6] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[7] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[8] Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs
Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(1): 018501.
[9] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[10] Fabrication and performance evaluation of GaN thermal neutron detectors with bm6LiF conversion layer
Zhifu Zhu(朱志甫), Zhijia Sun(孙志嘉), Jijun Zou(邹继军), Bin Tang(唐彬), Qinglei Xiu(修青磊), Renbo Wang(王仁波), Jinhui Qu(瞿金辉), Wenjuan Deng(邓文娟), Shaotang Wang(王少堂), Junbo Peng(彭俊波), Zhidong Wang(王志栋), Bin Tang(汤彬), Haiping Zhang(张海平). Chin. Phys. B, 2020, 29(9): 090401.
[11] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[12] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[13] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[14] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[15] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
No Suggested Reading articles found!