Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 125101    DOI: 10.1088/1674-1056/abb669
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules

Lijuan Yan(闫丽娟)†, Jianmei Shao(邵健梅), and Yongqiang Li(李永强)‡
College of Electronics & Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
Abstract  The non-spherical lowest-lying Lin (n=15-17) isomers were found with high symmetric compact structures, of which the stability was not rationalized in a previous report (J. Chem. Phys. 119 9444 (2003)). Based on the newly proposed super-valence bond model, the three prolate lithium clusters can be viewed as magnetic superatomic molecules, which are composed by sharing valence electron pairs and nuclei between two superatom units, namely, Li10 or Li11, and thus their stability can be given a good understanding. Molecular orbital and chemical bonding analysis clearly reveal that the Lin (n=15-17) clusters with prolate shapes are magnetic superatomic molecules. Our work may aid in the developments of the cluster-assembled materials or superatom-bonds.
Keywords:  jellium model      geometry and electronic shells      magnetic properties      stability      electron delocalization  
Received:  03 August 2020      Revised:  25 August 2020      Published:  02 December 2020
PACS:  51.60.+a (Magnetic properties)  
  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.A- (Ab initio calculations)  
  31.15.xw (Valence bond calculations)  
Fund: Project supported by the PhD Starting Fund of Guangdong Ocean University (Grant No. 120702/R17077) and the National Natural Science Foundation of China (Grant No. 11704080).
Corresponding Authors:  Corresponding author. E-mail: ylj_gdou@126.com Corresponding author. E-mail: lyq196399@163.com   

Cite this article: 

Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强) Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules 2020 Chin. Phys. B 29 125101

[1] Lewis G N J. Am. Chem. Soc. 38 762 DOI: 10.1021/ja02261a0021916
[2] Langmuir I Science 54 59 DOI: 10.1126/science.54.1386.591921
[3] Sidgwick N V and Bailey R W Proc. Roy. Soc. Lond. A 144 521 DOI: 10.2307/29355421934
[4] Mingos D M P J. Chem. Soc. Dalton Trans. 7 1163 DOI: 10.1039/DT97600011631976
[5] Wade K J. Chem. Soc. D 15 792 DOI: 10.1039/C297100007921971
[6] Randic M J. Am. Chem. Soc. 99 444 DOI: 10.1021/ja00444a0221977
[7] Stone A J Inorg. Chem. 20 563 DOI: 10.1021/ic50216a0491981
[8] Ekardt W Phys. Rev. B 29 1558 DOI: 10.1103/PhysRevB.29.15581984
[9] Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y and Cohen M L Phys. Rev. Lett. 52 2141 DOI: 10.1103/PhysRevLett.52.21411984
[10] Brack M Rev. Mod. Phys. 65 677 DOI: 10.1103/RevModPhys.65.6771993
[11] de Heer W A Rev. Mod. Phys. 65 611 DOI: 10.1103/RevModPhys.65.6111993
[12] Xu W W, Zhu B, Zeng X C and Gao Y Nat. Commun. 7 13574 DOI: 10.1038/ncomms135742016
[13] Walter M, Akola J, Lopez-Acevedo O, Jadzinsky P D, Calero G, Ackerson C J, Whetten R L, Grönbeck H and Häkkinen H Proc. Natl. Acad. Sci. USA 105 9157 DOI: 10.1073/pnas.08010011052008
[14] Zhu M, Aikens C M, Hollander F J, Schatz G C and Jin R J. Am. Chem. Soc. 130 5883 DOI: 10.1021/ja801173r2008
[15] Jiang D E, Whetten R L, Luo W and Dai S J. Phys. Chem. C 113 17291 DOI: 10.1021/jp90359372009
[16] Xie J, Zheng Y and Ying J Y J. Am. Chem. Soc. 131 888 DOI: 10.1021/ja806804u2009
[17] Jiang D E, Walter M and Akola J J. Phys. Chem. C 114 15883 DOI: 10.1021/jp90973422010
[18] Hakkinen H Nat. Chem. 4 443 DOI: 10.1038/nchem.13522012
[19] Clemenger K Phys. Rev. B 32 1359 DOI: 10.1103/PhysRevB.32.13591985
[20] Cheng L and Yang J J. Chem. Phys. 138 141101 DOI: 10.1063/1.48018602013
[21] Cheng L, Ren C, Zhang X and Yang J Nanoscale 5 1475 DOI: 10.1039/c2nr32888g2013
[22] Yuan Y, Cheng L and Yang J J. Phys. Chem. C 117 13276 DOI: 10.1021/jp402816b2013
[23] Yan L J. Phys. Chem. A 123 5517 DOI: 10.1021/acs.jpca.9b018552019
[24] Wang H and Cheng L Nanoscale 9 13209 DOI: 10.1039/C7NR03114A2017
[25] Liu L, Li P, Yuan L F, Cheng L and Yang J Nanoscale 8 12787 DOI: 10.1039/C6NR01998F2016
[26] Yan L, Cheng L and Yang J Chin. J. Chem. Phys. 28 476 DOI: 10.1063/1674-0068/28/cjcp15051052015
[27] Yan L, Cheng L and Yang J J. Phys. Chem. C 119 23274 DOI: 10.1021/acs.jpcc.5b079172015
[28] Lv J, Wang Y, Zhu L and Ma Y J. Chem. Phys. 137 084104 DOI: 10.1063/1.47467572012
[29] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, et al.2016 Gaussian 16, Revision B.01, Gaussian, Inc.: Wallingford, Ct.
[30] Perdew J P and Wang Y Phys. Rev. B 45 13244 DOI: 10.1103/PhysRevB.45.132441992
[31] Zhao Y and Truhlar D G J. Chem. Phys. 125 194101 DOI: 10.1063/1.23709932006
[32] Grimme S, Antony J, Ehrlich S and Krieg H J. Chem. Phys. 132 154104 DOI: 10.1063/1.33823442010
[33] Hay P J and Wadt W R J. Chem. Phys. 82 270 DOI: 10.1063/1.4487991985
[34] Lu T and Chen F J. Comput. Chem. 33 580 DOI: 10.1002/jcc.v33.52012
[35] Fournier R, Cheng J B Y and Wong A J. Chem. Phys. 119 9444 DOI: 10.1063/1.16152372003
[36] Dugourd P, Rayane D, Labastie P, Vezin B, Chevaleyre J and Broyer A M Chem. Phys. Lett. 197 433 DOI: 10.1016/0009-2614(92)85796-D1992
[37] Khanna S N, Rao B K and Jena P2002 Phys. Rev. B 65
[38] Gong X G and Zheng Q Q Phys. Rev. B 52 4756 DOI: 10.1103/PhysRevB.52.47561995
[39] Zhang X, Wang Y, Wang H, Lim A, Gantefoer G, Bowen K H, Reveles J U and Khanna S N J. Am. Chem. Soc. 135 4856 DOI: 10.1021/ja400830z2013
[40] Pradhan K, Reveles J U, Sen P and Khanna S N J. Chem. Phys. 132 124302 DOI: 10.1063/1.33677222010
[41] Medel V M, Reveles J U, Khanna S N, Chauhan V, Sen P and Castleman A W Proc. Natl. Acad. Sci. USA 108 10062 DOI: 10.1073/pnas.11001291082011
[42] Aguado A J. Phys. Chem. C 116 6841 DOI: 10.1021/jp21191792012
[43] Vasquez-Perez J M, Gamboa G U, Mejia-Rodriguez D, Alvarez-Ibarra A, Geudtner G, Calaminici P and Koster A M J. Phys. Chem. Lett. 6 4646 DOI: 10.1021/acs.jpclett.5b019832015
[44] Reber A C and Khanna S N Acc. Chem. Res. 50 255 DOI: 10.1021/acs.accounts.6b004642017
[45] Luo Z and Castleman A W Acc. Chem. Res. 47 2931 DOI: 10.1021/ar50015832014
[46] Zubarev D Y and Boldyrev A I Phys. Chem. Chem. Phys. 10 5207 DOI: 10.1039/b804083d2008
[1] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[2] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[3] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[4] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[5] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[6] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[7] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[8] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[9] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[10] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[11] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[12] Tilt adjustment for a portable absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(7): 073701.
[13] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[14] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[15] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
No Suggested Reading articles found!