Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016105    DOI: 10.1088/1674-1056/abb668
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid

Gan Ren(任淦)†
Abstract  Ionic liquids usually behave as fragile liquids, and the temperature dependence of their dynamic properties obeys supper-Arrhenius law. In this work, a dynamic crossover is observed in ([VIO2+][Tf2N-]2) ionic liquid at the temperature of 240-800 K. The diffusion coefficient does not obey a single Arrhenius law or a Vogel-Fulcher-Tammann (VFT) relation, but can be well fitted by three Arrhenius laws or a combination of a VFT relation and an Arrhenius law. The origin of the dynamic crossover is analyzed from correlation, structure, and thermodynamics. Ion gets a stronger backward correlation at a lower temperature, as shown by the fractal dimension of the random walk. The temperature dependence function of fractal dimension, heterogeneity order parameter, and thermodynamic data can be separated into three regions similar to that observed in the diffusion coefficient. The two crossover temperatures observed in the three types of data are almost the same as that in diffusion coefficient fitted by three Arrhenius laws. The results indicate that the dynamic crossover of [VIO2+][Tf2N-]2 is attributed to the heterogeneous structure when it undergoes cooling.
Keywords:  ionic liquids      dynamic crossover      heterogeneity order parameter      fractal dimension      fragile  
Received:  29 July 2020      Revised:  20 August 2020      Accepted manuscript online:  09 September 2020
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.20.Gy (Theory and models of liquid structure)  
Fund: Project supported by the Science Foundation of Civil Aviation Flight University of China (Grant Nos. J2019-059 and JG2019-19).
Corresponding Authors:  Corresponding author. E-mail: rengan@alumni.itp.ac.cn   

Cite this article: 

Gan Ren(任淦) Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid 2021 Chin. Phys. B 30 016105

1 Welton T 1999 Chem. Rev. 99 2071
2 Welton T 2004 Coord. Chem. Rev. 248 2459
3 Gali\'nski M, Lewandowski A and St\cepniak I 2006 Electrochim. Acta 51 5567
4 Wilkes J S, Levisky J A, Wilson R A and Hussey C L 1982 Inorg. Chem. 21 1263
5 Wang Y and Voth G A 2006 J. Phys. Chem. B 110 18601
6 Wang Y and Voth G A 2005 J. Am. Chem. Soc. 127 12192
7 Canongia Lopes J N A and Pàdua A A H 2006 J. Phys. Chem. B 110 3330
8 Ji Y, Shi R, Wang Y and Saielli G 2013 J. Phys. Chem. B 117 1104
9 Holbrey J D and Seddon K R 1999 J. Chem. Soc., Dalton Trans. 13 2133
10 Gordon C M, Holbrey J D, Kennedy A R and Seddon K R 1998 J. Mater. Chem. 8 2627
11 Xu W, Cooper E I and Angell C A 2003 J. Phys. Chem. B 107 6170
12 Habasaki J, Leon C and Ngai K 2017 Dynamics of Glassy, Crystalline and Liquid Ionic Conductors(Berlin: Springer)
13 Habasaki J and Ngai K L 2008 Anal. Sci. 24 1321
14 Jeong D, Choi M Y, Kim H J and Jung Y 2010 Phys. Chem. Chem. Phys. 12 2001
15 Cang H, Li J and Fayer M D 2003 J. Chem. Phys. 119 13017
16 Alam T M, Dreyer D R, Bielawski C W and Ruoff R S 2013 J. Phys. Chem. B 117 1967
17 Hayamizu K, Tsuzuki S, Seki S and Umebayashi Y 2011 J. Chem. Phys. 135 084505
18 Del Pòpolo M G and Voth G A 2004 J. Phys. Chem. B 108 1744
19 Park S W, Kim S and Jung Y 2015 Phys. Chem. Chem. Phys. 17 29281
20 Kim S, Park S W and Jung Y 2016 Phys. Chem. Chem. Phys. 18 6486
21 Köddermann T, Ludwig R and Paschek D 2008 ChemPhysChem 9 1851
22 Zhao Y and Hu Z 2012 Chem. Commun. 48 2231
23 Orava J, Hewak D W and Greer A L 2015 Adv. Funct. Mater. 25 4851
24 Angell C A 1993 J. Phys. Chem 97 6339
25 Mallamace F, Broccio M, Corsaro C, Faraone A, Wanderlingh U, Liu L, Mou C Y and Chen S H 2006 J. Chem. Phys. 124 161102
26 Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Stanley H E and Chen S H 2010 J. Phys. Chem. B 114 1870
27 Way C, Wadhwa P and Busch R 2007 Acta Mater. 55 2977
28 Lucas P, Coleman G J, Venkateswara Rao M, Edwards A N, Devaadithya C, Wei S, Alsayoud A Q, Potter B G, Muralidharan K and Deymier P A 2017 J. Phys. Chem. B 121 11210
29 Lascaris E, Hemmati M, Buldyrev S V, Stanley H E and Angell C A 2014 J. Chem. Phys. 140 224502
30 Smith K H, Shero E, Chizmeshya A and Wolf G H 1995 J. Chem. Phys. 102 6851
31 Ito K, Moynihan C T and Angell C A 1999 Nature 398 492
32 Shi R, Russo J and Tanaka H 2018 Proc. Natl. Acad. Sci. USA 115 9444
33 Yoshio M, Kagata T, Hoshino K, Mukai T, Ohno H and Kato T 2006 J. Am. Chem. Soc. 128 5570
34 Safavi A and Tohidi M 2010 J. Phys. Chem. C 114 6132
35 Feng C, Rajapaksha C P H, Cedillo J M, Piedrahita C, Cao J, Kaphle V, Lüssem B, Kyu T and Jàkli A 2019 Macromol. Rapid Commun. 40 1900299
36 Casella G, Causin V, Rastrelli F and Saielli G 2014 Phys. Chem. Chem. Phys. 16 5048
37 Bhowmik P K, Han H, Cebe J J, Burchett R A, Acharya B and Kumar S 2003 Liq. Cryst. 30 1433
38 Ram\'írez-Gonzàlez P E, Ren G, Saielli G and Wang Y 2016 J. Phys. Chem. B 120 5678
39 Berendsen H J, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
40 Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
41 Nosé S 1984 J. Chem. Phys. 81 511
42 Hoover W G 1985 Phys. Rev. A 31 1695
43 Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
44 Lucas P 2019 J. Non-Cryst Solids: X 4 100034
45 Berthier L Physics 4 42
46 Mandelbrot B 1967 Science 156 636
47 Cohen M H and Turnbull D 1959 J. Chem. Phys. 31 1164
48 Debenedetti P G Metastable Liquids: Concepts and Principles (Princeton: Princeton University Press)
[1] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[2] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[3] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[4] Fractal dynamics in the ionization of helium Rydberg atoms
Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎). Chin. Phys. B, 2016, 25(11): 110301.
[5] Biometric feature extraction using local fractal auto-correlation
Chen Xi, Zhang Jia-Shu. Chin. Phys. B, 2014, 23(9): 096401.
[6] Tortuosity for streamlines in porous media
Kou Jian-Long,Tang Xue-Ming,Zhang Hai-Yan,Lu Hang-Jun,Wu Feng-Min,Xu You-Sheng,Dong Yong-Sheng. Chin. Phys. B, 2012, 21(4): 044701.
[7] A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control
Wang Jun-Wei, Ma Qing-Hua, Zeng Li. Chin. Phys. B, 2011, 20(8): 080506.
[8] Universal critical properties of the Eulerian bond-cubic model
Ding Cheng-Xiang, Yao Gui-Yuan, Li Song, Deng You-Jin, Guo Wen-An. Chin. Phys. B, 2011, 20(7): 070504.
[9] Two-phase flow in correlated pore-throat random porous media
Yao Kai-Lun, Tian Ju-Ping. Chin. Phys. B, 2002, 11(4): 358-365.
No Suggested Reading articles found!