Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014201    DOI: 10.1088/1674-1056/abb662
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial

Tao Fu(傅涛)1,†, Xing-Xing Liu(刘兴兴)1, Guo-Hua Wen(文国华)2, Tang-You Sun(孙堂友)1, Gong-Li Xiao(肖功利)1, and Hai-Ou Li(李海鸥)1
1 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology (GUET), Guilin 541004, China; 2 Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong SAR, China
Abstract  We proposed a sandwich structure to realize broadband asymmetric transmission (AT) for both linearly and circularly polarized waves in the near infrared spectral region. The structure composes of a silica substrate and two sand-clock-like gold layers on the opposite sides of the substrate. Due to the surface plasmons of gold, the structure shows that the AT parameters of linearly and circularly polarized waves can reach 0.436 and 0.403, respectively. Meanwhile, a broadband property is presented for the AT parameter is over 0.3 between 320 THz and 340 THz. The structure realizes a diode-like AT for linearly wave in forward and circularly wave in backward, respectively. The magnetic dipoles excited by current in the two gold layers contribute to the broadband AT. The current density in top and bottom metallic layers illustrates the mechanism of the polarization conversion for broadband AT in detail.
Keywords:  asymmetric transmission      metasurface      polarization conversion      trerahertz      broadband      electromagnetic wave      near-infrared  
Revised:  02 August 2020      Published:  04 January 2021
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  42.79.Ci (Filters, zone plates, and polarizers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965009, 61874036, 61805053, and 61764001), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2018JJA170010 and 2018GXNSFAA281193), and the Innovation Project of GUET Graduate Education (Grant No. 2020YCXS019).
Corresponding Authors:  Corresponding author. E-mail: ft85@guet.edu.cn   

Cite this article: 

Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥) Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial 2021 Chin. Phys. B 30 014201

1 Patrice G and Federico C 2015 Rep. Prog. Phys. 78 024401
2 Deng Z L, Zhang S and Wang G P 2016 Nanoscale 8 1588
3 Chen H T, Taylor A J and Yu N F 2016 Rep. Prog. Phys. 79 076401
4 Deng Z L, Cao Y, Li X and Wang G P 2018 Photon Res. 6 443
5 Yu N F and Capasso F 2014 Nat. Mater. 13 139
6 Deng Z L and Li G X 2017 Mater. Today Phys. 3 16
7 Wang Z J, Yao K, Chen M, Chen H S and Liu Y M 2016 Phys. Rev. Lett. 117 157401
8 Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X and Li X P 2018 Nano Lett. 18 2885
9 Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
10 Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401
11 ingh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W and Zheludev N I 2009 Phys. Rev. B 80 153104
12 Kenanakis G, Xomalis A, Selimis A, Vamvakaki M, Farsari M, Kafesaki M, Soukoulis C M and Economou E N 2015 ACS Photon. 2 287
13 Shang X J, Zhai X, Wang L L, He M D, Li Q, Luo X and Duan H G 2017 Appl. Phys. Express 10 052602
14 Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811
15 Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch T and Lederer F 2010 Phys. Rev. Lett. 104 253902
16 Pfeiffer C, Zhang C, Ray V, Guo L J and Grbic A 2014 Phys. Rev. Lett. 113 023902
17 Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2012 Phys. Rev. Lett. 108 213905
18 Huang C, Feng Y J, Zhao J, Wang Z B and Jiang T 2012 Phys. Rev. B 85 195131
19 Liu D Y, Luo X Y, Liu J J and Don J F 2013 Chin. Phys. B 22 124202
20 Shi J H, Ma H F, Guan C Y, Wang Z P and Cui T J 2014 Phys. Rev. B 89 165128
21 Tang D F, Wang C, Pan W K, Li M H and Dong J F 2017 Opt. Express 25 11329
22 Xu K K, Xiao Z Y and Tang J Y 2016 Opt. Quantum Electron. 48 381
23 Tang B, Li Z Y, Liu Z Z, Callewaert F and Aydin K 2016 Sci. Rep. 6 39166
24 Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y and Wang Z H 2016 Wave Motion 66 1
25 Liu D J, Xiao Z Y, Ma X L and Wang Z H 2015 Opt. Commun. 354 272
26 Cheng Y Z, Gong R Z and Wu L 2016 Plasmonics 12 1113
27 Shi C Y Y, He X Y, Peng J, Xiao G N, Feng Liu, Lin F T and Zhang H 2019 Opt. Laser Technol. 114 28
28 Liu M, Xu Q, Chen X Y, Plum E, Li H, Zhang X Q, Zhang C H, Zou C W, Han J G and Zhang W L 2019 Sci. Rep. 9 4097
29 Wang Y H, Jin R C, Li J, Li J Q and Dong Z G 2018 Opt. Express 26 3508
30 Dai L L, Zhang Y P, O'Hara J F and Zhang H Y 2019 Opt. Express 27 35784
31 Li T, Hu F R, Qian Y X, Xiao J, Zhang L H, Zhang W T and Han J G 2020 Chin. Phys. B 29 024203
32 Jiang H, Zhao W Y and Jiang Y Y 2017 Opt. Express 25 19732
33 Li Y, Shen C, Xie Y B, Li J F, Wang W Q, Cummer S A and Jing Y 2017 Phys. Rev. Lett. 119 035501
34 Liu D J, Xiao Z Y, Ma X L, Ma Q W, Xu X X and Wang Z H 2015 Opt. Commun. 338 359
35 Liu N, Guo H C, Fu L W, Kaiser S, Schweizer H and Giessen H 2007 Nat. Mater. 7 31
36 Liu D J, Xiao Z Y, Ma X L and Wang Z H 2015 Appl. Phys. Express 8 052001
[1] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[2] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[3] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[4] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[5] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[6] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[7] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[8] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[9] Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction
Shao-He Li(李绍和), Jiu-Sheng Li(李九生). Chin. Phys. B, 2019, 28(9): 094210.
[10] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[11] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[12] Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials
Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(2): 024301.
[13] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[14] Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes
Haochen Liu(刘皓宸), Huaying Zhong(钟华英), Fankai Zheng(郑凡凯), Yue Xie(谢阅), Depeng Li(李德鹏), Dan Wu(吴丹), Ziming Zhou(周子明), Xiao-Wei Sun(孙小卫), Kai Wang(王恺). Chin. Phys. B, 2019, 28(12): 128504.
[15] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
No Suggested Reading articles found!