Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114209    DOI: 10.1088/1674-1056/abb661

Efficient and multifunctional terahertz polarization control device based on metamaterials

Xiao-Fei Jiao(焦晓飞)1,2,3, Zi-Heng Zhang(张子恒) 1,2,3, Yun Xu(徐云)1,2,3, and Guo-Feng Song(宋国峰)1,2,3, †
1 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China

Terahertz polarization devices are an important part of terahertz optical systems. Traditional terahertz polarization devices rely on birefringent crystals, and their performances are limited by the material structures. In this work, we theoretically demonstrate that the metamaterial consisting of the medium and the periodic metal band embedded in the medium can control broadband polarization effectively. The transmission length of the subwavelength waveguide mode gives rise to a broadband transmission peak. The resonant cavity structure formed by the dielectric layer and the waveguide layer possesses a high transmission efficiency. By optimizing the metamaterial structure parameters, we design a high-efficient (>90%) quarter-wave plate over a frequency range of 0.90 THz–1.10 THz and a high-efficient (>90%) half-wave plate over a frequency range of 0.92 THz–1.02 THz. Besides, due to the anisotropy of the structure, the metamaterials with the same structural parameters can achieve the function of the polarized beam splitting with an efficiency of up to 99% over a frequency range of 0.10 THz–0.55 THz. Therefore, the designed metamaterial has a multifunctional polarization control effect, which has potential applications in the terahertz integrated polarization optical system.

Keywords:  terahertz      metamaterials      waveguide transmission  
Received:  17 July 2020      Revised:  14 August 2020      Accepted manuscript online:  09 September 2020
Fund: the National Key Research and Development Plan, China (Grant No. 2016YFB0402402), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB43010000), the National Key Research and Development Project, China (Grant No. 2016YFB0400601), the National Basic Research Program of China (Grant No. 2015CB351902), the National Science and Technology Major Project, China (Grant No. 2018ZX01005101- 010), the National Natural Science Foundation of China (Grant Nos. 61835011and U1431231), the Key Research Projects of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC004), and the Beijing Science and Technology Projects (Grant No. Z151100001615042).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰) Efficient and multifunctional terahertz polarization control device based on metamaterials 2020 Chin. Phys. B 29 114209

Fig. 1.  

(a) Three-dimensional schematic diagram of metamaterial, and (b) cross-sectional view of structure in XZ plane.

Fig. 2.  

Metamaterial transmission spectrum under TE and TM polarization incidences.

Fig. 3.  

Electric field distribution in waveguide when TE is incident with waveguide length being 250 μm, metal strip 5 μm, medium width 175 μm, and incident wave frequency 0.85 THz.

Fig. 4.  

Plots of TE-polarized light transmittance versus frequency for different (a) medium widths and (b) waveguide transmission lengths.

Fig. 5.  

TM-polarized light frequency versus (a) medium widths and (b) waveguide transmission lengths.

Fig. 6.  

Plot of TM-polarized light transmittance versus frequency at different medium refractive indices.

Fig. 7.  

(a) Plot of linear transmissivity TM + TE and phase difference between electric field components TE and TM versus frequency for designed quarter-wave plat. (b) Plot of calculated ellipticity angle ζ and ellipticity χ versus frequency.

Fig. 8.  

(a) linear transmissivity TM + TE and phase difference between electric field components TM and TE versus frequency for designed half-wave plat. (b) Plot of calculated PRA and DoLP versus frequency.

Fig. 9.  

(a) Schematic diagram of polarization beam splitter. (b) Plot of transmittance and reflectance versus frequency for TE and TM incidences.

Zallat J, Collet C, Takakura Y 2004 Appl. Opt. 43 283 DOI: 10.1364/AO.43.000283
Yan C, Li X, Pu M, Ma X, Zhang F, Gao P, Liu K, Luo X 2019 Appl. Phys. Lett. 114 161904 DOI: 10.1063/1.5091475
Zhang L, Yuan H W, Li X M 2018 Opt. Quantum Electron. 50 353 DOI: 10.1007/s11082-018-1616-8
Alam M Z, Bahrami F, Aitchison J S, Mojahedi M 2014 IEEE Photonics J. 6 3700110 DOI: 10.1109/JPHOT.2014.2331232
Patskovsky S, Meunier M, Kabashin A V 2008 Opt. Commun. 281 5492 DOI: 10.1016/j.optcom.2008.07.061
Yu H, Oh Y, Kim S, Song S H, Kim D 2012 Opt. Lett. 37 3867 DOI: 10.1364/OL.37.003867
Core M T 2006 J. Lightwave Technol. 24 305 DOI: 10.1109/JLT.2005.859828
de Faria G V, Ferreira J, Xavier G B, Temporao G P, von der Weid J P 2008 Electron. Lett. 44 228 DOI: 10.1049/el:20083122
Yang H P D, Hsu I C, Lai F I, Lin G, Kuo H C, Chi J Y 2007 Jpn. J. Appl. Phys., Part 2 46 L326 DOI: 10.1143/JJAP.46.L326
Carrasco E, Perruisseau-Carrier J 2013 IEEE Anten. Wirel. Propag. Lett. 12 253 DOI: 10.1109/LAWP.2013.2247557
Chang Z, You B, Wu L S, Tang M, Zhang Y P, Mao J F 2016 IEEE Anten. Wirel. Propag. Lett. 15 1537 DOI: 10.1109/LAWP.2016.2519545
Jia D, Xu J, Xin T, Zhang C, Yu X 2019 Appl. Phys. Lett. 114 101105 DOI: 10.1063/1.5088247
Xiao P, Tu X, Kang L, Jiang C, Zhai S, Jiang Z, Pan D, Chen J, Jia X, Wu P 2018 Sci. Rep. 8 8032 DOI: 10.1038/s41598-018-26204-y
Monnai Y, Altmann K, Jansen C, Hillmer H, Koch M, Shinoda H 2013 Opt. Express 21 2347 DOI: 10.1364/OE.21.002347
Xing Q R, Li S X, Zhang W L, Lang L Y, Mao F L, Xu S X, Chai L, Wang Q Y 2005 Chin. Phys. Lett. 22 1821 DOI: 10.1088/0256-307X/22/7/072
Zhou S F, Reekie L, Chan H P, Chow Y T, Chung P S, Luk K M 2012 Opt. Express 20 9564 DOI: 10.1364/OE.20.009564
Dubey A, Jain A, Jayalakshmi C G, Shami T C, Awari N, Prabhu S S 2013 Microw. Opt. Technol. Lett. 55 393 DOI: 10.1002/mop.27295
Stepanov A G, Rogov A, Bonacina L, Wolf J P, Hauri C P 2014 Opt. Express 22 21618 DOI: 10.1364/OE.22.021618
Liu J, Liang H, Zhang M, Su H 2015 Opt. Commun. 339 222 DOI: 10.1016/j.optcom.2014.11.046
Nagai M, Mukai N, Minowa Y, Ashida M, Suzuki T, Takayanagi J, Ohtake H 2015 Opt. Express 23 4641 DOI: 10.1364/OE.23.004641
Nagai M, Mukai N, Minowa Y, Ashida M, Takayanagi J, Ohtake H 2014 Opt. Lett. 39 146 DOI: 10.1364/OL.39.000146
Huang Y, Yao Z, Hu F, Liu C, Yu L, Jin Y, Xu X 2017 Carbon 119 305 DOI: 10.1016/j.carbon.2017.04.037
Shah N A, Ahmad F, Syed A A, Naqvi Q A 2013 Int. J. Appl. Electromagn. Mech. 43 379 DOI: 10.3233/JAE-131724
Singh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W, Zheludev N I 2009 Phys. Rev. B 80 153104 DOI: 10.1103/PhysRevB.80.153104
Xu W Z, Shi Y T, Ye J, Ren F F, Shadrivov I V, Lu H, Liang L, Hu X, Jin B, Zhang R, Zheng Y, Tan H H, Jagadish C 2017 Adv. Opt. Mater. 5 1700108 DOI: 10.1002/adom.201700108
Li T F, Li Y L, Zhang Z Y, Yang Q H, Fan F, Wen Q Y, Chang S J 2020 Appl. Phys. Lett. 116 251102 DOI: 10.1063/5.0009704
Li Y L, Li T F, Wen Q Y, Fan F, Yang Q H, Chang S J 2020 Opt. Express 28 21062 DOI: 10.1364/OE.395668
Fan K, Strikwerda A C, Zhang X, Averitt R D 2013 Phys. Rev. B 87 161104 DOI: 10.1103/PhysRevB.87.161104
Fang B, Cai Z, Peng Y, Li C, Hong Z, Jing X 2019 J. Electromagn. Waves Appl. 33 1375 DOI: 10.1080/09205071.2019.1608868
Yang X, Zhang B, Shen J 2018 Opt. Quantum Electron. 50 315 DOI: 10.1007/s11082-018-1571-4
Juretschke H J 1999 Am. J. Phys. 67 929 DOI: 10.1119/1.19153
Ordal M A, Bell R J, Alexander R W, Long L L, Querry M R 1985 Appl. Opt. 24 4493 DOI: 10.1364/AO.24.004493
Islam M S, Cordeiro C M B, Nine M J, Sultana J, Cruz A L S, Dinovitser A, Ng B W H, Ebendorff-Heidepriem H, Losic D, Abbott D 2020 IEEE Access 8 97204 DOI: 10.1109/Access.6287639
Zhao Y, Alu A 2011 Phys. Rev. B 84 205428 DOI: 10.1103/PhysRevB.84.205428
Li T, Hu X, Chen H, Zhao C, Xu Y, Wei X, Song G 2017 Opt. Express 25 23597 DOI: 10.1364/OE.25.023597
Ding F, Wang Z, He S, Shalaev V M, Kildishev A V 2015 ACS Nano 9 4111 DOI: 10.1021/acsnano.5b00218
[1] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[2] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[3] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[4] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[5] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[6] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[7] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[8] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[9] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[10] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[13] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[14] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[15] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
No Suggested Reading articles found!