Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017303    DOI: 10.1088/1674-1056/abb65d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical conductivity of twisted bilayer graphene near the magic angle

Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言)†
Abstract  We theoretically study the band structure and optical conductivity of twisted bilayer graphene (TBG) near the magic angle considering the effects of lattice relaxation. We show that the optical conductivity spectrum is characterized by a series of peaks associated with the van Hove singularities in the band structure, and the peak energies evolve systematically with the twist angle. Lattice relaxation effects in TBG modify its band structure, especially the flat bands, which leads to significant shifts of the peaks in the optical conductivity. These results demonstrate that spectroscopic features in the optical conductivity can serve as fingerprints for exploring the band structure, band gap, and lattice relaxation in magic-angle TBG as well as identifying its rotation angle.
Keywords:  graphene      moir\'e superlattice      magic angle      optical conductivity  
Received:  16 July 2020      Revised:  17 August 2020      Accepted manuscript online:  09 September 2020
PACS:  73.21.Cd (Superlattices)  
  78.67.Wj (Optical properties of graphene)  
  73.22.Pr (Electronic structure of graphene)  
  73.25.+i (Surface conductivity and carrier phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874271 and 11874272).
Corresponding Authors:  Corresponding author. E-mail: heyan_ctp@scu.edu.cn   

Cite this article: 

Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言) Optical conductivity of twisted bilayer graphene near the magic angle 2021 Chin. Phys. B 30 017303

1 Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K 2013 Nature 497 594
2 Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
3 Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427
4 Li G H, Luican A, dos Santos J M B L, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109
5 Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
6 dos Santos J M B L, Peres N M R and Castro A H 2007 Phys. Rev. Lett. 99 256802
7 Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
8 Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
9 Yankowitz M, Chen S W, Polshyn H, Zhang Y X, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059
10 Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605
11 Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
12 Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653
13 Chen G, Sharpe A L, Fox E J, Zhang Y-H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F 2020 Nature 579 56
14 Lü X Y and Li Z Q 2019 Acta Phys. Sin. 68 220303 (in Chinese)
15 Basov D N, Fogler M M, Lanzara A, Wang F and Zhang Y B 2014 Rev. Mod. Phys. 86 959
16 Lu X B and Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese)
17 Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W A, Lanzara A and Conrad E H 2009 Phys. Rev. Lett. 103 226803
18 Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
19 Brar V W, Wickenburg S, Panlasigui M, Park C H, Wehling T O, Zhang Y B, Decker R, Girit C, Balatsky A V, Louie S G, Zettl A and Crommie M F 2010 Phys. Rev. Lett. 104 036805
20 Siegel D A, Park C H, Hwang C, Deslippe J, Fedorov A V, Louie S G and Lanzara A 2011 Proc. Natl. Acad. Sci. USA 108 11365
21 Zhang Y B, Brar V W, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A and Crommie M F 2008 Nat. Phys. 4 627
22 Tudorovskiy T and Mikhailov S A 2010 Phys. Rev. B 82 073411
23 Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
24 Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
25 Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
26 Moon P and Koshino M 2013 Phys. Rev. B 87 205404
27 Calderòn M J and Bascones E 2019 arXiv:1912.09935 [cond-mat.str-el]
28 Bi Z, Yuan N F Q and Fu L 2019 Phys. Rev. B 100 035448)
29 Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087
30 Shallcross S, Sharma S, Kandelaki E and Pankratov O A 2010 Phys. Rev. B 81 165105
31 Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P 2019 Nat. Mater. 18 448
32 Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311
33 Dai S Y, Xiang Y and Srolovitz D J 2016 Nano Lett. 16 5923
34 Gargiulo F and Yazyev O V2018 2D Mater. 5 01501
35 Kim N Y, Jeong H Y, Kim J H, Kim G, Shin H S and Lee Z 2017 Acs Nano 11 7084
36 van Wijk M M, Schuring A, Katsnelson M I and Fasolino A 2015 2D Mater. 2 034010
37 Woods C R, Britnell L, Eckmann A, Ma R S, Lu J C, Guo H M, Lin X, Yu G L, Cao Y, Gorbachev R V, Kretinin A V, Park J, Ponomarenko L A, Katsnelson M I, Gornostyrev Y N, Watanabe K, Taniguchi T, Casiraghi C, Gao H J, Geim A K and Novoselov K S 2014 Nat. Phys. 10 451
38 Zhang K and Tadmor E B 2018 J. Mech. Phys. Solids 112 225
39 Carr S, Massatt D, Torrisi S B, Cazeaux P, Luskin M and Kaxiras E 2018 Phys. Rev. B 98 224102
40 Gusynin V P, Sharapov S G and Carbotte J P 2007 Phys. Rev. Lett. 98 157402
41 Gusynin V P and Sharapov S G 2006 Phys. Rev. B 73 245411
[1] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[12] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[13] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[14] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[15] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
No Suggested Reading articles found!