Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014207    DOI: 10.1088/1674-1056/abb65c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition

Xu Wang(王旭)1, Jue Wang(王珏)1, Tao Ma(马涛)1,2,†, Heng Liu(刘恒)1,3, and Fang Wang(王芳)1,2
1 College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China; 2 Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China; 3 Academician Workstation of Electromagnetic Wave Engineering of Henan Province, Xinxiang 453007, China
Abstract  We investigate a graphene-coated nanowire waveguide (GCNW) composed of two suspended wedge porous silicon nanowires and a thin Ag partition. The plasmonic characteristics of the proposed structure in terahertz (THz) frequency band are simulated by the finite element method (FEM). The parameters including the gap between the nanowires and Ag partition, the height of the nanowire, the thickness of the Ag partition, and the Fermi level of graphene, are optimized. The simulation results show that a normalized mode field area of ∼ 10 -4 and a figure of merit of ∼ 100 can be achieved. Compared with the cylindrical GCNW and isolated GCNW, the proposed wedge GCNW has good electric field enhancement. A waveguide sensitivity of 32.28 is obtained, which indicates the prospects of application in refractive index (RI) sensing in THz frequency band. Due to the adjustable plasmonic characteristics by changing the Fermi level (E F), the proposed structure has promising applications in the electro-optic modulations, optical interconnects, and optical switches.
Keywords:  surface plasmon polariton      graphene      porous silicon      finite element method (FEM)  
Revised:  12 August 2020      Published:  30 December 2020
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61627818), the Key Project of Henan Provincial Education Department, China (Grant No. 19A510002), the Natural Science Project of the Cultivation Foundation of Henan Provincial Normal University, China (Grant No. 2017PL04), and the Ph. D. Program of Henan Normal University, China (Grant Nos. 5101239170010 and gd17167).
Corresponding Authors:  Corresponding author. E-mail: matao@htu.edu.cn   

Cite this article: 

Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳) Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition 2021 Chin. Phys. B 30 014207

1 Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
2 Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
3 Liu X J, Yang L W, Ma J Y, Li C L, Jin W and Bi W H 2018 Chin. Phys. B 27 104206
4 Fu G W, Wang Y, Wang B L, Yang K L, Wang X Y, Fu X H, Jin W and Bi W H 2020 Chin. Phys. B 29 34209
5 Hu D J, Lim J L, Jiang M, Wang Y, Luan F, Shum P P, Wei H and Tong W 2012 Opt. Lett. 37 2283
6 Zhu B, Ren G, Cryan M J, Gao Y, Yang Y, Wu B, Lian Y and Jian S 2015 Opt. Mater. Express 5 2174
7 Lu W 2016 Appl. Opt. 55 5095
8 Zhang Z Q, Jia Y X, Guo X F, Ge D H, Cheng G G and Ding J N 2018 Acta Phys. Sin. 67 033101 (in Chinese)
9 Ning R X, Jiao Z and Bao J 2017 Chin. Phys. Lett. 34 107801
10 Zhang H J, Zheng G G, Cheng Y Y, Zou X J and Xu L H 2018 Chin. Phys. Lett. 35 038102
11 Cen G, Zhang Z B, Lv X Y, Liu K H and Li Z Q 2020 Acta Phys. Sin. 69 027803 (in Chinese)
12 Cheng X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B 29 77803
13 Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y and Xiao S 2018 Physica E 103 93
14 Cen C, Lin H, Liang C, Huang J, Chen X, Yi Z, Tang Y, Duan T, Xu X, Xiao S and Yi Y 2018 Superlattices and Microstructures 120 427
15 Chen J, Zeng Y, Xu X, Chen X, Zhou Z, Shi P, Yi Z, Ye X, Xiao S and Yi Y 2018 Nanomaterials 8 175
16 He S, Zhang X and He Y 2013 Opt. Express 21 30664
17 Xiao B, Qin K, Xiao S and Han Z 2015 Opt. Commun. 355 602
18 Xu W, Zhu Z H, Liu K, Zhang J F, Yuan X D, Lu Q S and Qin S Q 2015 Opt. Express 23 5147
19 Ye S, Wang Z, Tang L, Zhang Y, Lu R and Liu Y 2014 Opt. Express 22 26173
20 Qi L and Liu C 2019 Opt. Mater. Express 9 1298
21 Tassin P, Koschny T, Kafesaki M and Soukoulis C M 2012 Nat. Photon. 6 259
22 Yuan Y, Yao J and Xu W 2012 Opt. Lett. 37 960
23 Teng D, Wang K, Li Z, Zhao Y, Zhao G, Li H and Wang H 2019 Appl. Sci. 9 2351
24 Liu J P, Zhai X, Xie F, Wang L L, Xia S X, Li H J, Luo X and Shang X J 2017 J. Lightwave Technol. 35 1971
25 Mbonye M, Mendis R and Mittleman D M 2009 Appl. Phys.s Lett. 95 233506
26 Hajati M and Hajati Y 2016 J. Opt. Soc. Am. B 33 2560
27 Hajati M and Hajati Y 2017 Appl. Opt. 56 870
28 Charrier J, Lupi C, Haji L and Boisrobert C 2000 Mater. Sci. Semicond. Process. 3 357
29 Hwang K W and Park S H 2015 Material Research Innovations 19 S8-549
30 Zhang H, Jie L and Jia Z 2018 Sensors 18 105
31 Olenych I B, Monastyrskii L S, Aksimentyeva O I, Orovc\'ík L and Salamakha M Y 2019 Molecular Crystals and Liquid Crystals 673 32
32 Girault P, Azuelos P, Lorrain N, Poffo L, Lemaitre J, Pirasteh P, Hardy I, Thual M, Guendouz M and Charrier J 2017 Opt. Mater. 72 596
33 Jiao L S, Liu J Y, Li H Y, Wu T S, Li F, Wang H Y and Niu L 2016 J. Power Sources 315 9
34 Shin D H, Kim J H, Kim J H, Jang C W, Seo S W, Lee H S, Kim S and Choi S H 2017 J. Alloys Compd. 715 291
35 Chan K C, Tso C Y, Hussain A and Chao C Y H 2019 Appl. Thermal Eng. 161 114112
36 Zunger A, Katzir A and Halperin A 1976 Phys. Rev. B 13 5560
37 Kou Y and Forstner J 2016 Opt. Express 24 4714
38 Bian Y and Gong Q 2013 Appl. Opt. 52 5733
39 Zhao Y, Li X G, Zhou X and Zhang Y N 2016 Sensors and Actuators B: Chemical 231 324
40 Gao H, Cao Q, Teng D, Zhu M and Wang K 2015 Opt. Express 23 27457
41 Yusheng B, Zheng Z, Pengfei Y, Jing X, Guanjun W, Lei L, Jiansheng L, Jinsong Z and Tao Z 2014 IEEE J. Select. Top. Quantum Electron. 20 181
42 Wang Y, Ma Y, Guo X and Tong L 2012 Opt. Express 20 19006
43 Bian Y, Zheng Z, Zhao X, Zhu J and Zhou T 2009 Opt. Express 17 21320
44 Ciminelli C, Campanella C M, Dell'Olio F, Campanella C E and Armenise M N 2013 Prog. Quantum Electron. 37 51
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[3] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[4] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[5] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[6] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[7] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[8] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[9] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[12] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[13] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[14] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[15] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
No Suggested Reading articles found!