Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 127802    DOI: 10.1088/1674-1056/abb65b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photoluminescence of green InGaN/GaN MQWs grown on pre-wells

Shou-Qiang Lai(赖寿强)1, Qing-Xuan Li(李青璇)1, Hao Long(龙浩)1, Jin-Zhao Wu(吴瑾照)1, Lei-Ying Ying(应磊莹)1, Zhi-Wei Zheng(郑志威)1, Zhi-Ren Qiu(丘志仁)2, and Bao-Ping Zhang(张保平)1,
1 School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
Abstract  Photoluminescence (PL) characteristics of the structure consisting of green InGaN/GaN multiple quantum wells (MQWs) and low indium content InGaN/GaN pre-wells are investigated. Several PL peaks from pre-wells and green InGaN/GaN MQWs are observed. The peak energy values for both pre-wells and green InGaN/GaN MQWs display an S-shaped variation with temperature. In addition, the differences in the carrier localization effect, defect density, and phonon-exciton interaction between the pre-wells and green InGaN/GaN MQWs, and the internal quantum efficiency of the sample are studied. The obtained results elucidate the mechanism of the luminescence characteristics of the sample and demonstrate the significant stress blocking effect of pre-wells.
Keywords:  InGaN/GaN      photoluminescence      pre-wells      green LED  
Received:  30 April 2020      Revised:  10 August 2020      Accepted manuscript online:  09 September 2020
PACS:  78.66.Fd (III-V semiconductors)  
  78.67.De (Quantum wells)  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003), the National Key Research and Development Program of China (Grant Nos. 2016YFB0400803 and 2017YFE0131500), and the Fund from the State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, China.
Corresponding Authors:  Corresponding author. E-mail: bzhang@xmu.edu.cn   

Cite this article: 

Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平) Photoluminescence of green InGaN/GaN MQWs grown on pre-wells 2020 Chin. Phys. B 29 127802

[1] Koike M, Shibata N, Kato H and Takahashi Y IEEE J. Selec. Top. Quantum Electron. 8 271 DOI: 10.1109/2944.9991802002
[2] Zhang J Y, Cai L E, Zhang B P, Hu X L, Jiang F, Yu J Z and Wang Q M Appl. Phys. Lett. 95 161110 DOI: 10.1063/1.32542322009
[3] Strite S, Lin M E and Morko H Thin Solid Films 231 197 DOI: 10.1016/0040-6090(93)90713-Y1993
[4] Weng G, Mei Y, Liu J, Hofmann W and Zhang B Opt. Express 24 15546 DOI: 10.1364/OE.24.0155462016
[5] Queren D, Avramescu A, Bruederl G, Breidenassel A, Schillgalies M, Lutgen S and Strauss U Appl. Phys. Lett. 94 689414 DOI: 10.1063/1.30895732009
[6] Chang J Y, Chang Y A, Chen F M, Kuo Y T and Kuo Y K IEEE Photon. Technol. Lett. 25 55 DOI: 10.1109/LPT.2012.22277002013
[7] Weng G E, Zhao W R, Chen S Q, Akiyama H, Li Z C, Liu J P and Zhang B P Nanoscale Res. Lett. 10 1 DOI: 10.1186/1556-276X-10-12015
[8] Jeong H, Jeong H J, Oh H M, Hong C H, Suh E K, Lerondel G and Jeong M S Sci. Rep. 5 9373 DOI: 10.1038/srep093732015
[9] Tawfik W Z, Bae S J, Ryu S W, Jeong T and Lee J K Opt. Mater. 38 131 DOI: 10.1016/j.optmat.2014.10.0152014
[10] Yun Ji W L, Talha Erdem, Rui Chen, Swee Tiam Tan, Zi-Hui Zhang, Zhengang Ju, Xueliang Zhang, Handong Sun, Xiao Wei Sun, Yuji Zhao, Steven P.DenBaars, Shuji Nakamura and Hilmi Volkan Demir Appl. Phys. Lett. 104 143506 DOI: 10.1063/1.48708402014
[11] Pecharromán-Gallego R, Martin R W and Watson I M J. Phys. D: Appl. Phys. 37 2954 DOI: 10.1088/0022-3727/37/21/0032004
[12] Rajabi K, Wei Y, Ding L, He J, Hua Z, Ji Q, Shen B, Yan T and Hu X Superlattices & Microstructures 80 102 DOI: 10.1016/j.spmi.2014.12.0212015
[13] Alam S, Sundaram S, Elouneg-Jamroz M, Li X, El Gmili Y, Robin I C, Voss P L, Salvestrini J P and Ougazzaden A Superlattices & Microstructures 104 291 DOI: 10.1016/j.spmi.2017.02.0362017
[14] Wang J X, Wang L, Zhao W, Zou X and Luo Y Sci. China: Technol. Sci. 53 306 DOI: 10.1007/s11431-010-0062-z2010
[15] Langer T, Jo?Nen H, Kruse A, Bremers H, Rossow U and Hangleiter A Appl. Phys. Lett. 103 022108 DOI: 10.1063/1.48134462013
[16] Wang L, Wang L, Yu J, Hao Z, Luo Y, Sun C, Han Y, Xiong B, Wang J and Li H Acs Appl. Mater. & Interfaces 11 1228 DOI: 10.1021/acsami.8b167672018
[17] Cheng Y C, Lin E C, Wu C M, Yang C C, Yang J R, Rosenauer A, Ma K J, Shi S C, Chen L C and Pan C C Appl. Phys. Lett. 84 2506 DOI: 10.1063/1.16908722004
[18] Lai M H, Zheng Z W, Yu J, Ying L Y and Zhang B P J. Korean Phys. Soc. 68 1291 DOI: 10.3938/jkps.68.12912016
[19] Kumar M S, Park J Y, Lee Y S, Chung S J, Hong C H and Suh E K J. Phys. D: Appl. Phys. 40 5050 DOI: 10.1088/0022-3727/40/17/0072007
[20] Yang F, Zhang Y T, Han X, Li P C, Jiang J Y, Huang Z, Yin J Z, Zhao D G, Zhang B L and Du G T Superlattices & Microstructures 91 259 DOI: 10.1016/j.spmi.2016.01.0242016
[21] Wei T, Zhang L, Ji X, Wang J, Huo Z, Sun B, Hu Q, Wei X, Duan R and Zhao L IEEE Photon. J. 6 1 DOI: 10.1109/JPHOT.2014.23634282014
[22] Zeng Y P, Liu W J, Wen G E, Zhao W R, Zuo H J, Yu J, Zhang J Y, Ying L Y and Zhang B P Chin. Phys. Lett. 32 064207 DOI: 10.1088/0256-307X/32/6/0642072015
[23] Huang Y, Duan X, Cui Y and Lieber C M Nano Lett. 2 101 DOI: 10.1021/nl015667d2002
[24] Shmagin I K, Muth J F, Kolbas R M, Mack M P, Abare A C, Keller S, Coldren L A, Mishra U K and Denbaars S P Appl. Phys. Lett. 71 1455 DOI: 10.1063/1.1199351997
[25] Reshchikov M A and Morkoc H2005 J. Appl. Phys. 97 061301
[26] Ramaiah K S, Su Y K, Chang S J, Kerr B, Liu H P and Chen I G Appl. Phys. Lett. 84 3307 DOI: 10.1063/1.17283022004
[27] Liang M M, Weng G E, Zhang J Y, Cai X M, Xue Q L, Ying L Y and Zhang B P Chin. Phys. B 23 054211 DOI: 10.1088/1674-1056/23/5/0542112014
[28] Xing B, Cao W Y and Du W M2010 Chin. J. Lumin. 6 864
[29] Yu C X, L W, Z L Wang, Zhi B H, Yi L B, Chang Z S, Yan J H, Bing X, Jian W, and Hong T L J. Appl. Phys. 122 135701 DOI: 10.1063/1.50056192017
[30] Wang H, Ji Z, Qu S, Wang G, Jiang Y, Liu B, Xu X and Mino H Opt. Express 20 3932 DOI: 10.1364/OE.20.0039322012
[31] Shan W, Little B D, Song J J, Feng Z C and Stall R Appl. Phys. Lett. 69 3315 DOI: 10.1063/1.1172911996
[32] Hammersley S, Watson-Parris D, Dawson P, Godfrey M J, Badcock T J, Kappers M J, McAleese C, Oliver R A and Humphreys C J J. Appl. Phys. 111 083512 DOI: 10.1063/1.37030622012
[33] Rahman M A and Islam M R2014 Developments in Renewable Energy Technology
[34] Kim K, Lambrecht W R L and Segall B Phys. Rev. B 53 16310 DOI: 10.1103/PhysRevB.53.163101996
[35] Li Q, Wang S, Gong Z N, Yun F, Zhang Y and Ding W Optik 127 1809 DOI: 10.1016/j.ijleo.2015.11.0952016
[36] Ebaid M, Kang J H, Lim S H, Ko S M, Cho Y H and Ryu S W Acta Mater. 65 118 DOI: 10.1016/j.actamat.2013.11.0582014
[37] Kawakami Y, Nishizuka K, Yamada D, Kaneta A, Funato M, Narukawa Y and Mukai T Appl. Phys. Lett. 90 261912 DOI: 10.1063/1.27483092007
[38] Murotani H, Shibuya K, Yoneda A, Hashiguchi Y, Miyoshi H, Kurai S, Okada N, Tadatomo K, Yano Y and Tabuchi T Jpn. J. Appl. Phys. 58 DOI: 10.7567/1347-4065/ab040b2019
[1] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[2] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[3] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[4] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[5] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[6] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[7] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[8] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[9] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[10] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[11] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[12] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[13] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
No Suggested Reading articles found!