Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110302    DOI: 10.1088/1674-1056/abb45b
GENERAL Prev   Next  

Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice

Yue Hu(胡玥)1, Zheng-Xin Guo(郭政鑫)1, Ze-Ming Zhong(钟泽明)1,2, †, and Zhi Li(李志)1,, ‡
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Provincial Engineering Technology Research Center for Quantum Precision Measurement, SPTE, South China Normal University, Guangzhou 510006, China
2 School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China

We analytically and numerically investigate the dynamical properties of the tilted dispersion relativistic quasiparticles emerged in a cold atomic optical lattice system. By introducing the next nearest neighboring (NNN) hopping term into Su–Schrieffer–Heeger (SSH) model, the Dirac quasiparticles with tilted dispersion relation are realized. The results show that the tilted dispersion causes a drift in relativistic quasiparticles rather than affecting interference behavior between inner states. To be specific, the relativistic phenomena of the quasiparticles induced by the inner state interference (such as Zitterbewegung, Klein paradox, etc.) is completely unaffected by the tilted dispersion. In order to distinguish the drift induced by tilted dispersion and common initial velocity, we calculate the momentum distribution of the relativistic quasiparticles. We obtain the difference between the drift induced by initial velocity and tilted dispersion. The former affects the ZB, while the latter does not. By using this character, we propose a quench dynamics scheme to obtain a stable mono-spin state. The proposed cold atomic lattice system would provide a promising platform in exploring the intrinsic exotic physics of relativistic quasiparticles and the related systems.

Keywords:  tilted dispersion      wave-packet dynamics      quantum quench  
Received:  09 June 2020      Revised:  23 July 2020      Accepted manuscript online:  02 September 2020
Fund: the National Key Research and Development Program of China (Grant Nos. 2016YFA0301803 and 2016YFA0302800), the National Natural Science Foundation of China (Grant Nos. 11604103, 11704132, 11822403, and 91636218), the NSAF, China (Grant Nos. U1801661 and U1830111), the PCSIRT, China (Grant No. IRT1243), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030313436, 2018A030313322, and 2018A0303130066), the KPST of Guangzhou (Grant No. 201804020055), China Postdoctoral Science Foundation (Grant No. 2018M633063), and the Startup Foundation of SCNU.
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志) Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice 2020 Chin. Phys. B 29 110302

Fig. 1.  

(a) The proposed one-dimensional chain optical lattice scheme and atomic hopping configuration between the different A (or B) sublattice sites. t1 (t2) denotes the hopping between sites of the same (different) type atoms, a = 1 is the lattice constant. θ = π/2 is the hopping phase factor. (b) and (c) Dispersion relationship in the condition of Bloch Hamiltonian with v0 = 0 and v0 = 1, respectively. (d)–(h) Dispersion relationship with different v0 in the condition of the low-energy effective Hamiltonian [Eq. (5)].

Fig. 2.  

(a)–(e) Numerically calculated probability distributions, |Ψ(x,t)|2, with different time. The width of the initial wave packet L = 2, effective mass m = 1, effective light speed vx = 1.

Fig. 3.  

Analytically (lines) and numerically (symbols) calculated ZB effect. The expectation value $\bar{x}(t)$ with different v0 (m) is shown in (a) [(b)]. The corresponding frequency (c) and amplitude (d) of ZB with different m are provided. Throughout the calculation, the width of the initial wavepacket L = 2 and effective fermi velocity vx = 1.

Fig. 4.  

The expectation value $\bar{x}(t)$ for the cases of (a) v0 = 0.5 and (b) q0 = 0.5. The lines (symbols) correspond to the exact solution (numerical results).

Fig. 5.  

Momentum distributions of the positive and negative energy parts of the wave packet: (a) v0 = −0.5, (b) v0 = 0, (c) v0 = 0.5 with q0 = 0; (d) q0 = −0.5, (e) q0 = 0, (f) q0 = 0.5 with v0 = 0.

Fig. 6.  

The relationship of q0 and v0 for a stable single pure component wave packet. Insert: Visualized wavepacket for the condition of red star. Through the numerical calculation, the other parameters L = 2, q0 = 0.5, m = 1, and vx = 1.

Schrödinger E 1930 Sizungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24 418
Gerritsma R, Kirchmair G, Zähringer F et al. 2010 Nature 463 68 DOI: 10.1038/nature08688
Barut A O, Bracken A J 1981 Phys. Rev. D 23 2454 DOI: 10.1103/PhysRevD.23.2454
Schliemann J, Loss D, Westervelt R M 2005 Phys. Rev. Lett. 94 206801 DOI: 10.1103/PhysRevLett.94.206801
Katsnelson M I 2006 Eur. Phys. J. B 51 157 DOI: 10.1140/epjb/e2006-00203-1
Zhang X D 2008 Phys. Rev. Lett. 100 113903 DOI: 10.1103/PhysRevLett.100.113903
Vaishnav J Y, Clark C W 2008 Phys. Rev. Lett. 100 153002 DOI: 10.1103/PhysRevLett.100.153002
Zawadzki W, Rusin T M 2011 J. Phys.: Condens. Matter 23 143201 DOI: 10.1088/0953-8984/23/14/143201
Li Z, Wang H Q, Zhang D W, Zhu S L, Xing D Y 2016 Phys. Rev. A 94 043617 DOI: 10.1103/PhysRevA.94.043617
Huang T Y, Ma T, Wang L 2018 J. Phys.: Condens. Matter 30 245501 DOI: 10.1088/1361-648X/aac23b
Zhang D W, Zhu Y Q, Zhao Y X, Yan H, Zhu S L 2018 Adv. Phys. 67 253 DOI: 10.1080/00018732.2019.1594094
Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698 DOI: 10.1103/PhysRevLett.42.1698
Meier E J, An F A, Gadway B 2016 Nat. Commun. 7 13986 DOI: 10.1038/ncomms13986
Schomerus H 2013 Opt. Lett. 38 1912 DOI: 10.1364/OL.38.001912
Engelhardt G, Benito M, Platero G, Brandes T 2017 Phys. Rev. Lett. 118 197702 DOI: 10.1103/PhysRevLett.118.197702
Zhu S L, Wang B G, Duan L M 2007 Phys. Rev. Lett. 98 260402 DOI: 10.1103/PhysRevLett.98.260402
Zhu S L, Zhang D W, Wang Z D 2009 Phys. Rev. Lett. 102 210403 DOI: 10.1103/PhysRevLett.102.210403
Zhu S L, Shao L B, Wang Z D, Duan L M 2011 Phys. Rev. Lett. 106 100404 DOI: 10.1103/PhysRevLett.106.100404
Cooper N R, Dalibard J, Spielman I B 2019 Rev. Mod. Phys. 91 015005 DOI: 10.1103/RevModPhys.91.015005
Lewenstein M, Sanpera A, Ahufinger V, Damski B, De A S, Sen U 2007 Adv. Phys. 56 243 DOI: 10.1080/00018730701223200
Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523 DOI: 10.1103/RevModPhys.83.1523
Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401 DOI: 10.1088/0034-4885/77/12/126401
Islam R, Senko C, Campbell W C et al. 2013 Science 340 583 DOI: 10.1126/science.1232296
Zhao W L, Gong J B, Wang W G, Casati G, Liu J, Fu L B 2016 Phys. Rev. A 94 053631 DOI: 10.1103/PhysRevA.94.053631
Dou F Q, Cao H, Liu J, Fu L B 2016 Phys. Rev. A 93 043419 DOI: 10.1103/PhysRevA.93.043419
Zhao W L, Wang J Z, Xiaohui Wang X H, Tong P Q 2019 Phys. Rev. E 99 042201 DOI: 10.1103/PhysRevE.99.042201
Li S C, Fu L B, Liu J 2018 Phys. Rev. A 98 013601 DOI: 10.1103/PhysRevA.98.013601
Dou F Q, Liu J, Fu L B 2018 Phys. Rev. A 98 022102 DOI: 10.1103/PhysRevA.98.022102
Li Z, Cao H, Fu L B 2015 Phys. Rev. A 91 023623 DOI: 10.1103/PhysRevA.91.023623
Hu X D, Huang Y L, Shen X, Liao K Y, Li Z 2019 Phys. Lett. A 383 125982 DOI: 10.1016/j.physleta.2019.125982
Shen X, Li Z 2018 Phys. Rev. A 97 01360 DOI: 10.1103/PhysRevA.97.013608
Shen X, Wang F D, Li Z, Wu Z G 2019 Phys. Rev. A 100 062514 DOI: 10.1103/PhysRevA.100.062514
Shen X, Zhang D W, Yan H, Li Z, Zhu S L 2020 Phys. Rev. Research 2 013037 DOI: 10.1103/PhysRevResearch.2.013037
Thaller B 2004 arXiv quant-ph/0409079
[1] Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble
Xiao-Qiang Su(苏晓强) and You-Quan Zhao(赵有权). Chin. Phys. B, 2020, 29(12): 120506.
No Suggested Reading articles found!