Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107504    DOI: 10.1088/1674-1056/abb3f7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process

Yan-Li Liu(刘艳丽)1,2,3, Qiang Ma(马强)1,2, Xin Wang(王鑫)2, Jian-Jun Zhou(周建军)2, Tong-Yun Zhao(赵同云)1,3, Feng-Xia Hu(胡凤霞)1,3, Ji-Rong Sun(孙继荣)1,3, Bao-Gen Shen(沈保根)1,3,†()
1 State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Double main phase process is applied to fabricate [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7; M = Cu, Al, Co, and Nb) sintered magnets with high misch metal (MM) content. In comparison to the magnets by single main phase process, the enhanced magnetic properties have been achieved. For magnets of x = 0.7, Hcj increases to 371.9 kA/m by 60.5%, and (BH)max is significantly enhanced to 253.3 kJ/m3 by 56.9%, compared with those of the single main phase magnets of the same nominal composition. In combination with minor loops and magnetic recoil curves, the property improvement of magnets with double main phase method is well explained. As a result, it is demonstrated that double main phase technology is an effective approach to improve the permanent magnetic properties of MM based sintered magnets.

Keywords:  misch metal      double main phase process      magnetic properties      coercivity     
Received:  21 August 2020      Published:  05 October 2020
PACS:  75.47.Np (Metals and alloys)  
  75.50.Ww (Permanent magnets)  
  75.60.Jk (Magnetization reversal mechanisms)  
Corresponding Authors:  Bao-Gen Shen(沈保根)   
About author: 
†Corresponding author. E-mail: shenbg@iphy.ac.cn
* Project supported by the National Natural Foundation of China (Grant Nos. 51590880, 11564030, and 51571126), the National Key Research Program of China (Grant No. 2016YFB0700903), Fujian Institute of Innovation, Chinese Academy of Sciences (Grant No. FJCXY18040302), the Key Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-M05-1), the Inner Mongolia Science and Technology Major Project of 2016, China, and the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2018LH05006 and 2018LH05011).

Cite this article: 

Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根) High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process 2020 Chin. Phys. B 29 107504

Fig. 1.  

(a) The room-temperature demagnetization curves of the [(Pr, Nd)1 – xMMx]13.8 FebalM1.5B5.9 (x = 0.0, 0.5, 0.7, and 1.0) magnets. (b) XRD patterns of the sintered magnet prepared by SMP or DMP process.

Fig. 2.  

The comparison of (BH)max for MM based RE–Fe–B sintered magnets. The solid and hollow symbols are corresponding to SMP and DMP processes, respectively.

Fig. 3.  

Temperature dependence of σm and d σm / d T in the range of 300–700 K for [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7) magnets prepared by DMP process.

Fig. 4.  

The back-scattered images of [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 magnets: (a) x = 0.5 with SMP, (b) x = 0.5 with DMP, (c) x = 0.7 with SMP, and (d) x = 0.7 with DMP process.

Fig. 5.  

(a) Back-scattered electron image and (b)–(f) the corresponding EDX mappings of La, Ce, Fe, Pr, and Nd for [(Pr, Nd)0.3MM0.7]13.8FebalM1.5B5.9 magnets with SMP process.

Fig. 6.  

(a) Back-scattered electron image and (b)–(f) the corresponding EPMA mappings of La, Ce, Fe, Pr, and Nd for [(Pr, Nd)0.3MM0.7]13.8FebalM1.5B5.9 DMP magnets.

Fig. 7.  

The dependence of M, Mr, and Hcj of minor loops of [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 magnets on H/Hcj for (a) x = 0.5 and (b) x = 0.7, the insets show the minor loops.

Fig. 8.  

The recoil loops for [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7) magnets with SMP and DMP processes, respectively.

Fig. 9.  

(a) The recoil loops for [(Pr, Nd)0.5MM0.5]13.8FebalM1.5B5.9 DMP magnets, (b) the dependence of χrev/σs on the applied magnetic field H deduced from the recoil loops for [(Pr, Nd)1 – xMMx]13.8FebalM1.5B5.9 (x = 0.5 and 0.7) magnets with SMP and DMP processes, respectively.

[1]
Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y 1984 J. Appl. Phys. 55 2083 DOI: 10.1063/1.333572
[2]
Hu B P, Niu E, Zhao Y G, Chen G A, Chen Z A, Jin G S, Zhang J, Rao X L, Wang Z X 2013 AIP Adv. 3 042136 DOI: 10.1063/1.4803657
[3]
Zhu M G, Han R, Li W, Huang S L, Zheng D W, Song L W, Shi X N 2015 IEEE Trans. Magn. 51 2104604 DOI: 10.1109/TMAG.2015.2451696
[4]
Li Z B, Shen B G, Zhang M, Hu F X, Sun J R 2015 J. Alloys Compd. 628 325 DOI: 10.1016/j.jallcom.2014.12.042
[5]
Jin J Y, Wang Z, Bai G H, Peng B X, Liu Y S, Yan M 2018 J. Alloy. Compd. 749 580 DOI: 10.1016/j.jallcom.2018.03.291
[6]
Li Z, Liu W Q, Zha S S, Li Y Q, Wang Y Q, Zhang D T, Yue M, Zhang J X 2015 J. Rare Earths 33 961 DOI: 10.1016/S1002-0721(14)60512-3
[7]
Zuo W L, Zuo S L, Li R, Zhao T Y, Hu F X, Sun J R, Zhang X F, Liu J P, Shen B G 2017 J. Alloy. Compd. 695 1786 DOI: 10.1016/j.jallcom.2016.11.009
[8]
Stadelmaier H H, Liu N C, Elmasry N A 1985 Mater. Lett. 3 130 DOI: 10.1016/0167-577X(85)90014-X
[9]
Hadjipanayis G C, Tao Y F, Gudimetta K 1985 Appl. Phys. Lett. 47 757 DOI: 10.1063/1.96029
[10]
Wei Q, Lu Z, Wang J, Yao Q R, Long Q X, Qin M, Zhou H Y 2020 J. Phase Equilib. Diffus. 41 35 DOI: 10.1007/s11669-020-00777-6
[11]
Herbst J F, Meyer M S, Pinkerton F E 2012 J. Appl. Phys. 111 07A718 DOI: 10.1063/1.3675175
[12]
Yan C J, Guo S, Chen R J, Lee D, Yan A R 2014 IEEE Trans. Magn. 50 2102605 DOI: 10.1109/TMAG.2014.2322823
[13]
Lu Q M, Niu J, Liu W Q, Yue M, Altounian Z 2017 IEEE Trans. Magn. 53 2100603 DOI: 10.1109/TMAG.2017.2718041
[14]
Zhang M, Li Z B, Shen B G, Hu F X, Sun J R 2015 J. Alloys Compd. 651 144 DOI: 10.1016/j.jallcom.2015.08.044
[15]
Herbst J F 1991 Rev. Mod. Phys. 63 819 DOI: 10.1103/RevModPhys.63.819
[16]
Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H 1986 J. Appl. Phys. 59 873 DOI: 10.1063/1.336611
[17]
Liao X F, Zhao L Z, Zhang J S, Zhong X C, Jiao D L, Liu Z W 2018 J. Magn. Magn. Mater. 464 31 DOI: 10.1016/j.jmmm.2018.05.041
[18]
Zhang X F, Shi Y, Ma Q, Liu Y L, Shi M F, Li Y F, Wang G F, Zhao Z R 2015 Rare Metal Mat. Eng. 44 748 DOI: 1002-185X(2015)03-0748-05
[19]
Zhu M G, Li W, Wang J D, Zheng L Y, Li Y F, Zhang K, Feng H B, Liu T 2014 IEEE Trans. Magn. 50 1000104 DOI: 10.1109/TMAG.2013.2278018
[20]
Niu E, Chen Z A, Chen G A, Zhao Y G, Zhang J, Rao X L, Hu B P, Wang Z X 2014 J. Appl. Phys. 115 113912 DOI: 10.1063/1.4869202
[21]
Jin J Y, Ma T Y, Zhang Y J, Bai G H, Yan M 2016 Sci. Rep. 6 32200 DOI: 10.1038/srep32200
[22]
Shang R X, Xiong J F, Liu D, Zuo S L, Zhao X, Li R, Zuo W L, Zhao T Y, Chen R J, Sun J R, Shen B G 2017 Chin. Phys. B 26 057502 DOI: 10.1088/1674-1056/26/5/057502
[23]
Lai R S, Chen R J, Yin W Z, Tang X, Wang Z X, Jin C X, Lee D, Yan A R 2017 J. Alloys Compd. 724 275 DOI: 10.1016/j.jallcom.2017.06.290
[24]
Zhang Y J, Ma T Y, Jin J Y, Li J T, Wu C, Shen B G, Yan M 2017 Acta Mater. 128 22 DOI: 10.1016/j.actamat.2017.02.002
[25]
Yu X Q 2018 Study on structure, magntic properties and magnetic hardening mechanism of sintered permanent magnets based on misch metal Ph. D. dissertation Beijing Beijing University of Technology in Chinese Chapter 5 76 80
[26]
Liu W Q, Zhang Z P, Yue M, Li Z, Wu D, Zhou Z, Chen H, Li Y Q, Pang Z S, Yu X 2019 Intermetallics 115 106626 DOI: 10.1016/j.intermet.2019.106626
[27]
Shang R X, Xiong J F, Li R, Zuo W L, Zhang J, Zhao T Y, Chen R J, Sun J R, Shen B G 2017 AIP Adv. 7 056215 DOI: 10.1063/1.4973603
[28]
Chen H, Liu W Q, Yin Y T, Li Z, Wang Z J, Li Y Q, Yue M, Pang Z S, Yu X, Yu C H 2020 Intermetallics 124 106870 DOI: 10.1016/j.intermet.2020.106870
[29]
Ma Q, Zhu J T, Zhang X F, Zhao Z R, Liu Y L, Wang G F, Li Y F, Li Z B 2018 Rare Metals 37 237 DOI: 10.1007/s12598-017-0887-8
[30]
Liu Y L, Zhou J J, Wang X, Ma Q, Liu F, Liu J, Zhao T Y, Hu F X, Sun J R, Shen B G 2020 J. Magn. Magn. Mater. 513 167162 DOI: 10.1016/j.jmmm.2020.167162
[31]
Sepehri-Amin H, Liu L H, Ohkubo T, Yano M, Shoji T, Kato A, Schrefl T, Hono K 2015 Acta Mater. 99 297
[32]
Li Z B, Shen B G, Sun J R 2013 J. Appl. Phys. 113 013902 DOI: 10.1063/1.4772606
[33]
Fan X D, Guo S, Chen K, Chen R J, Lee D, You C Y, Yan A R 2016 J. Magn. Magn. Mater. 419 394 DOI: 10.1016/j.jmmm.2016.06.048
[1] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[2] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[3] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[4] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[5] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[6] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[7] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[8] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[9] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[10] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[11] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[12] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[13] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[14] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[15] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
No Suggested Reading articles found!