Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108401    DOI: 10.1088/1674-1056/abb3f6
Review Prev   Next  

Theoretical investigation of halide perovskites for solar cell and optoelectronic applications

Jingxiu Yang(杨竞秀)1,3, Peng Zhang(张鹏)2,3, Jianping Wang(王建平)3, Su-Huai Wei(魏苏淮)3,†()
1 School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
2 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
3 Beijing Computational Science Research Center, Beijing 100193, China

The solar cell based on organic-inorganic hybrid halide perovskite is progressing amazingly fast in last decade owing to the robust experimental and theoretical investigations. First-principles calculation is one of the crucial ways to understand the nature of the materials and is practically helpful to the development and application of perovskite solar cells. Here, we briefly review the progress of theoretical studies we made in the last few years on the modification of electronic structures of perovskites by varying the composition, configuration, and structure, and the new understandings into the defect properties of halide perovskites for solar cell and optoelectronic applications. These understandings are foundations and new starting points for future investigations. We hope the experience and inspiration gained from these studies encourage more theoretical explorations for new functional perovskite-based materials.

Keywords:  solar cell      optoelectronic properties      defect      halide perovskite     
Received:  17 July 2020      Published:  05 October 2020
PACS:  84.60.Jt (Photoelectric conversion)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.J- (Point defects and defect clusters)  
  46.25.Cc (Theoretical studies)  
Corresponding Authors:  Su-Huai Wei(魏苏淮)   
About author: 
†Corresponding author. E-mail:
* Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the National Natural Science Foundation of China (Grant Nos. 51672023, 11634003, and U1930402), and the Creative Talents Plan in CPSF, China (Grant No. BX2018033).

Cite this article: 

Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), Su-Huai Wei(魏苏淮) Theoretical investigation of halide perovskites for solar cell and optoelectronic applications 2020 Chin. Phys. B 29 108401

Fig. 1.  

The crystal structure of (a) α phase MAPbI3, (b) partial charge density of the CBM, (c) partial charge density of the VBM, (d) band structure, (e) density of states (DOS) and partial DOS of MAPbI3. (f) Schematic optical absorption of Si, GaAs, and halide perovskites. Modified with permission from Ref. [17].

Fig. 2.  

The formation energies (a) and the transition energy levels (b) of intrinsic point defects in MAPbI3 under the condition of different chemical potentials. Defects with much higher formation energies are displayed as dashed lines. Zero in energy is referred to the VBM. Modified with permission from Refs. [17, 23].

Fig. 3.  

Correlations between tolerance factor and crystal structure of perovskite materials. Reprinted with permission from Ref. [44].

Fig. 4.  

(a) Variations of volumes, formation energies (per halogen atom), and band gaps of the mixed halide alloys CsPb(X1 – xYx)3 (X, Y = I, Br, Cl) by SQS calculation. The solid lines are fitted by calculated results of SQS at nine different concentrations (fitted points are not shown for clarity). The triangles represent the stable ordered structures at x = 1/3. For band gaps, the available experimental data are given (red cross marks are data from Ref. [71], the red plus marks are data from Ref. [58], and the green star marks are date from Ref. [63]). (b) The contributions of strain energy and Coulomb energy in the alloy. (c) Particularly stable mixed-halide structures for CsPbX2Y1 (X, Y = I, Br, Cl; the atomic size of X is larger than Y). Reprinted with permission from Ref. [45].

Fig. 5.  

(a) Four common structures for ABX3 compounds as denoted. (b) Screening progress. (c) Calculated optical absorption coefficients and conversion efficiencies of six types of perovskites, MAPbI3, and GaAs. Reprinted with permission from Ref. [46].

Fig. 6.  

(a) Schematic idea of atomic transmutation and candidate $ {A}_{2}{B}_{1}^{+}{B}_{2}^{3+}{X}_{6}^{{\rm{VII}}} $ perovskites for materials screening. (b) Energies of Cs2AgBiCl6 with different arrangements of AgCl6 (in gray) + BiCl6 (in blue). The energy of the lowest configuration F is set to zero. (c) Materials screening process by considering the properties relevant to photovoltaic performance, such as decomposition enthalpy (Δ H), band gap, effective masses ($ {m}_{{\rm{e}}}^{* } $ , $ {m}_{{\rm{h}}}^{* } $ ), and exciton binding energy (Δ Eb). The red squares mean the materials passing the screening (selected) and the green ones mean not passing (abandoned). The optimal nontoxic $ {A}_{2}{B}_{1}^{+}{B}_{2}^{3+}{X}_{6} $ perovskites satisfying all the criterions are marked with red checks. (d) The Δ H corresponding to different decomposition pathways for selected $ {A}_{2}{B}_{1}^{+}{B}_{2}^{3+}{X}_{6} $ . Reprinted with permission from Ref. [42].

Fig. 7.  

Calculated band structures for (a) CsMgCl3, (b) Cs2Mg2Cl6, (c) Cs2NaInCl6, (d) Cs2AgInCl6, (e) Cs2In+In3+Cl6, (f) Cs2NaBiCl6, (g) Cs2AgBiCl6, and (h) Cs2InBiCl6. The s, p, and d orbital components of the bands are represented as red/light blue, green/dark blue, and pink spheres, respectively. All the bands are aligned with respect to the Cs 1s core level. The dashed lines are at the middle of the band gaps. Reprinted with permission from Ref. [82].

Fig. 8.  

(a) The band structures of the ordered and fully disordered Cs2AgBiBr6. The red dots represent the band edge states with the spectral weight over 50%. (b) The calculated optical absorption coefficients α (cm−1) of the fully ordered (black), partial disordered (blue), and fully disordered (red) Cs2AgBiBr6. (c) The Monte–Carlo simulation of the excess energy and (d) the corresponding averaged atomic correlation functions of pairs up to the mth neighbor (Π2m) as a function of temperature. Modification with permission from Ref. [83].

Fig. 9.  

The schematic idea to stablize the disordered phase by introducing extra electrons. Modification with permission from Ref. [83].

Fig. 10.  

(a) Top and side views of bulk orthorhombic CsPbBr3, CsBr-terminated and PbBr2-terminated triple-layer (L3) 2D orthorhombic CsPbBr3, respectively. The structures of the monolayer (L1) and double-layers (L2) are indicated. (b) Formation energies (eV/f.u.) of 2D orthorhombic CsPbBr3 (top) and orthorhombic MAPbI3 (bottom). Relaxed AX-terminated slabs (squares) and PbX2-terminated slabs (triangles) are presented for three different thicknesses, i.e., L1, L2, and L3. The symbols are connected by lines for a better view. The formation energy of bulk APbX3 is indicated by a horizontal dashed line. Reprinted with permission from Ref. [107].

Fig. 11.  

(a) Representative examples of two classes of structural families for solar cell absorbers of tetrahedral coordination structure and octahedral coordination structure. Spinel structure can be considered as the mixing of tetrahedral and octahedral building blocks but keep high crystal symmetry. (b) The calculated optical absorption spectrum and the spectroscopic limited maximum efficiency (SLME) for 10 spinel compounds MgIn2Se4, ZnSc2Se4, ZnY2Se4, CdSc2Se4, CdY2Se4, HgAl2Se4, HgIn2S4, CdIn2Se4, HgSc2S4, and HgY2S4, in comparison to typical solar cell absorbers GaAs and CH3NH2PbI3. Five compounds with inferior performance (MgIn2Se4, ZnSc2Se4, ZnY2Se4, CdSc2Se4, and CdY2Se4) have been shaded. The orbital character of VBM and CBM for three selected compounds, HgAl2Se4, ZnSc2Se4, and CH3NH2PbI3. The dipole-allowed intra-atomic transitions are indicated. Reprinted with permission from Ref. [108].

Fig. 12.  

(a) The schematic illustration of DX center in tetragonal semiconductor. The local structures of the host and α+, α, and DY defect states and the calculated defect formation energy of BiPb in (b) Bi-doped MAPbBr3 and (c) Bi-doped MAPbI3 as a function of Fermi energy EF under the anion-rich/Pb-poor condition. The numbers indicate the obtained bond lengths for the full lines or distances for the dotted lines of the broken bonds. (d) The alignment of the band edges of MAPbI3 and MAPbBr3 and the relative single electron energy levels of α and DY states. The red lines represent the stable states, while the grey lines represent the metastable states. The numbers in brackets represent the projected p orbital percentage of (anion/cation). Modification with permission from Refs. [29, 130].

Fig. 13.  

(a) Schematic diagram of energy levels of the Bi-doped MAPbBr3 crystal in dark. (b) Schematic representation of the emergence of DX-like (DY) defect levels under light illumination. Also shown are the dynamic photocarrier generation and recombination processes that lead to the negative photoconductivity. (c) Negative photoconductivity curve corresponding to the transitions taking place relevant to DY center under light. (d) Schematic plot of formation energies of a shallow donor BiPb (α+) and DY center in MAPbBr3 as functions of the Fermi level (ϵf). (e) Atomic configuration of the DY center in Bi-doped MAPbBr3. (f) The transition of Bi-doped MAPbBr3 from the metastable α state to the stable DY state. Modification with permission from Refs. [29, 120].

Fig. 14.  

(a) Schematic illustration of normal band structure for conventional n-type TCOs such as In2O3 and inverted band structure for p-type TCs. The black dashed line indicates the position of Fermi level, while the green dotted lines present the doping-limit energy level. (b) Interband (T1) and intraband (T2) optical transitions in p-type TCs. (c) Band structures of CsPbCl3 calculated by HSE06 and GW+SOC methods. (d) Calculated formation energies for various intrinsic defects, two defect complexes, and three extrinsic defects (KPb, NaPb, and AgPb) in CsPbCl3, under both the Pb-rich and Pb-poor conditions. (e) Decomposition energies (Δ Hd) of 27 IMHPs. (f) Band gaps of 10 stable IMHPs, calculated with GW+SOC method. Modification with permission from Ref. [121].

Hao J Li W Zhai J Chen H 2019 Mat. Sci. Eng. R 135 1 DOI: 10.1016/j.mser.2018.08.001
Cohen R E 1992 Nature 358 136 DOI: 10.1038/358136a0
Pena M Fierro J 2001 Chem. Rev. 101 1981 DOI: 10.1021/cr980129f
Kanhere P Chen Z 2014 Molecules 19 19995 DOI: 10.3390/molecules191219995
Kojima A Teshima K Shirai Y Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 DOI: 10.1021/ja809598r
Lee M M Teuscher J Miyasaka T Murakami T N Snaith H J 2012 Science 338 643 DOI: 10.1126/science.1228604
Burschka J Pellet N Moon S J Humphry-Baker R Gao P Nazeeruddin M K Grätzel M 2013 Nature 499 316 DOI: 10.1038/nature12340
Liu M Johnston M B Snaith H J 2013 Nature 501 395 DOI: 10.1038/nature12509
Green M A Ho-Baillie A Snaith H J 2014 Nat. Photonics 8 506 DOI: 10.1038/nphoton.2014.134
Zhou H Chen Q Li G Luo S Song T B Duan H S Hong Z You J Liu Y Yang Y 2014 Science 345 542 DOI: 10.1126/science.1254050
Saliba M Matsui T Domanski K Seo J Y Ummadisingu A Zakeeruddin S M Correa-Baena J-P Tress W R Abate A Hagfeldt A 2016 Science 354 206 DOI: 10.1126/science.aah5557
Yang W S Park B W Jung E H Jeon N J Kim Y C Lee D U Shin S S Seo J Kim E K Noh J H 2017 Science 356 1376 DOI: 10.1126/science.aan2301
Jeon N J Na H Jung E H Yang T Y Lee Y G Kim G Shin H W Seok S I Lee J Seo J 2018 Nat. Energy 3 682 DOI: 10.1038/s41560-018-0200-6
Jiang Q Zhao Y Zhang X Yang X Chen Y Chu Z Ye Q Li X Yin Z You J 2019 Nat. Photonics 13 460 DOI: 10.1038/s41566-019-0398-2
Jung E H Jeon N J Park E Y Moon C S Shin T J Yang T-Y Noh J H Seo J 2019 Nature 567 511 DOI: 10.1038/s41586-019-1036-3
Yin W J Yang J H Kang J Yan Y Wei S H 2015 J. Mater. Chem. A 3 8926 DOI: 10.1039/C4TA05033A
De Wolf S Holovsky J Moon S J Löper P Niesen B Ledinsky M Haug F J Yum J H Ballif C 2014 J. Phys. Chem. Lett. 5 1035 DOI: 10.1021/jz500279b
D’innocenzo V Grancini G Alcocer M J Kandada A R S Stranks S D Lee M M Lanzani G Snaith H J Petrozza A 2014 Nat. Commun. 5 1 DOI: 10.1038/ncomms4586(2014)
Wehrenfennig C Eperon G E Johnston M B Snaith H J Herz L M 2014 Adv. Mater. 26 1584 DOI: 10.1002/adma.201305172
Zhang X Shen J X Wang W Van de Walle C G 2018 ACS Energy Lett. 3 2329 DOI: 10.1021/acsenergylett.8b01297
Zhang X Shen J X Van de Walle C G 2019 Adv. Energy Mater.
Yin W J Shi T Yan Y 2014 Appl. Phys. Lett. 104 063903 DOI: 10.1063/1.4864778
Walsh A Scanlon D O Chen S Gong X Wei S H 2015 Angew. Chem., Int. Ed. 54 1791 DOI: 10.1002/anie.201409740
Yin W J Shi T Yan Y 2014 Advanced Materials 26 4653 DOI: 10.1002/adma.v26.27
Wang Q Shao Y Xie H Lyu L Liu X Gao Y Huang J 2014 Appl. Phys. Lett. 105 163508 DOI: 10.1063/1.4899051
Agiorgousis M L Sun Y Y Zeng H Zhang S 2014 J Am Chem Soc 136 14570 DOI: 10.1021/ja5079305
Meggiolaro D Motti S G Mosconi E Barker A J Ball J Perini C A R Deschler F Petrozza A De Angelis F 2018 Energy Environ. Sci. 11 702 DOI: 10.1039/C8EE00124C
Li J L Yang J Wu T Wei S H 2019 J. Mater. Chem. C 7 4230 DOI: 10.1039/C8TC06222F
Shi Z Guo J Chen Y Li Q Pan Y Zhang H Xia Y Huang W 2017 Adv. Mater. 29 1605005 DOI: 10.1002/adma.201605005
Ono L K Park N G Zhu K Huang W Qi Y 2017 ACS Energy Letters 2 1749 DOI: 10.1021/acsenergylett.7b00517
Niu G Li W Meng F Wang L Dong H Qiu Y 2014 J. Mater. Chem. A 2 705 DOI: 10.1039/C3TA13606J
Conings B Drijkoningen J Gauquelin N Babayigit A D’Haen J D’Olieslaeger L Ethirajan A Verbeeck J Manca J Mosconi E Angelis F D Boyen H G 2015 Adv. Energy Mater. 5 1500477 DOI: 10.1002/aenm.201500477
Zhang Y Y Chen S Xu P Xiang H Gong X G Walsh A Wei S-H 2018 Chin. Phys. Lett. 35 036104 DOI: 10.1088/0256-307X/35/3/036104
Li C Lu X Ding W Feng L Gao Y Guo Z 2008 Acta Crystallogr., Sect. B: Struct. Sci. 64 702 DOI: 10.1107/S0108768108032734
Marshall K Walker M Walton R Hatton R 2016 Nat. Energy 1 1 DOI: 10.1038/ng0492-1
Hao F Stoumpos C C Cao D H Chang R P Kanatzidis M G 2014 Nat. Photonics 8 489 DOI: 10.1038/nphoton.2014.82
Gu S Lin R Han Q Gao Y Tan H Zhu J 2020 Adv. Mater. 32 1907392 DOI: 10.1002/adma.201907392
Kamarudin M A Hirotani D Wang Z Hamada K Nishimura K Shen Q Toyoda T Iikubo S Minemoto T Yoshino K 2019 J. Phys. Chem. Lett. 10 5277 DOI: 10.1021/acs.jpclett.9b02024
Tavakoli M M Zakeeruddin S M Grätzel M Fan Z 2018 Adv. Mater. 30 1705998 DOI: 10.1002/adma.201705998
Lin R Xiao K Qin Z Han Q Zhang C Wei M Saidaminov M I Gao Y Xu J Xiao M 2019 Nat. Energy 4 864 DOI: 10.1038/s41560-019-0466-3
Zhao X G Yang J H Fu Y Yang D Xu Q Yu L Wei S H Zhang L 2017 J Am Chem Soc 139 2630 DOI: 10.1021/jacs.6b09645
Sun Q Wang J Yin W J Yan Y 2018 Adv. Mater. 30 1705901 DOI: 10.1002/adma.201705901
Li Z Yang M Park J S Wei S H Berry J J Zhu K 2015 Chem. Mater. 28 284 DOI: 10.1021/acs.chemmater.5b04107
Yin W J Yan Y Wei S H 2014 J. Phys. Chem. Lett. 5 3625 DOI: 10.1021/jz501896w
Huo Z Wei S H Yin W J 2018 J. Phys. D: Appl. Phys. 51 474003 DOI: 10.1088/1361-6463/aae1ee
Lee J W Seol D J Cho A N Park N G 2014 Adv. Mater. 26 4991 DOI: 10.1002/adma.201401137
Filip M R Eperon G E Snaith H J Giustino F 2014 Nat. Commun. 5 1 DOI: 10.1038/ncomms6757(2014)
Bartel C J Sutton C Goldsmith B R Ouyang R Musgrave C B Ghiringhelli L M Scheffler M 2019 Science Adv. 5 eaav0693 DOI: 10.1126/sciadv.aav0693
Sun Q Yin W J 2017 J. Am. Chem. Soc. 139 14905 DOI: 10.1021/jacs.7b09379
Saliba M Matsui T Seo J Y Domanski K Correa-Baena J P Nazeeruddin M K Zakeeruddin S M Tress W Abate A Hagfeldt A 2016 Energy Environ. Sci. 9 1989 DOI: 10.1039/C5EE03874J
Manser J S Christians J A Kamat P V 2016 Chem. Rev. 116 12956 DOI: 10.1021/acs.chemrev.6b00136
Tan H Jain A Voznyy O Lan X De Arquer F P G Fan J Z Quintero-Bermudez R Yuan M Zhang B Zhao Y 2017 Science 355 722 DOI: 10.1126/science.aai9081
Saidaminov M I Williams K Wei M Johnston A Quintero-Bermudez R Vafaie M Pina J M Proppe A H Hou Y Walters G 2020 Nat. Mater. 19 412 DOI: 10.1038/s41563-019-0602-2
Li Y Zhang X Huang H Kershaw S V Rogach A L 2020 Mater. Today 32 204 DOI: 10.1016/j.mattod.2019.06.007
Abdollahi Nejand B Hossain I M Jakoby M Moghadamzadeh S Abzieher T Gharibzadeh S Schwenzer J A Nazari P Schackmar F Hauschild D 2020 Adv. Energy Mater. 10 1902583 DOI: 10.1002/aenm.v10.5
Colella S Mosconi E Fedeli P Listorti A Gazza F Orlandi F Ferro P Besagni T Rizzo A Calestani G 2013 Chem. Mater. 25 4613 DOI: 10.1021/cm402919x
Noh J H Im S H Heo J H Mandal T N Seok S I 2013 Nano Lett. 13 1764 DOI: 10.1021/nl400349b
Edri E Kirmayer S Henning A Mukhopadhyay S Gartsman K Rosenwaks Y Hodes G Cahen D 2014 Nano Lett. 14 1000 DOI: 10.1021/nl404454h
Stranks S D Eperon G E Grancini G Menelaou C Alcocer M J Leijtens T Herz L M Petrozza A Snaith H J 2013 Science 342 341 DOI: 10.1126/science.1243982
Edri E Kirmayer S Cahen D Hodes G 2013 J. Phys. Chem. Lett. 4 897 DOI: 10.1021/jz400348q
Edri E Kirmayer S Kulbak M Hodes G Cahen D 2014 J. Phys. Chem. Lett. 5 429 DOI: 10.1021/jz402706q
Suarez B Gonzalez-Pedro V Ripolles T S Sanchez R S Otero L Mora-Sero I 2014 J. Phys. Chem. Lett. 5 1628 DOI: 10.1021/jz5006797
Zhao Y Zhu K 2016 Chem. Soc. Rev. 45 655 DOI: 10.1039/C4CS00458B
Beal R E Slotcavage D J Leijtens T Bowring A R Belisle R A Nguyen W H Burkhard G F Hoke E T McGehee M D 2016 J. Phys. Chem. Lett. 7 746 DOI: 10.1021/acs.jpclett.6b00002
Ono L K Juarez-Perez E J Qi Y 2017 ACS Appl. Mater. Interfaces 9 30197 DOI: 10.1021/acsami.7b06001
Jena A K Kulkarni A Miyasaka T 2019 Chem. Rev. 119 3036 DOI: 10.1021/acs.chemrev.8b00539
Righetto M Meggiolaro D Rizzo A Sorrentino R He Z Meneghesso G Sum T C Gatti T Lamberti F 2020 Prog. Mater. Sci. 110 100639 DOI: 10.1016/j.pmatsci.2020.100639
McMeekin D P Sadoughi G Rehman W Eperon G E Saliba M Hörantner M T Haghighirad A Sakai N Korte L Rech B 2016 Science 351 151 DOI: 10.1126/science.aad5845
Han Y Zhao H Duan C Yang S Yang Z Liu Z Liu S 2020 Adv. Funct. Mater. 30 1909972 DOI: 10.1023/A:1016584519829
Kitazawa N Watanabe Y Nakamura Y 2002 J. Mater. Sci. 37 3585 DOI: 10.1016/j.nanoen.2016.02.020
Perera S Hui H Zhao C Xue H Sun F Deng C Gross N Milleville C Xu X Watson D F Weinstein B Sun Y-Y Zhang S Zeng H 2016 Nano Energy 22 129 DOI: 10.1021/nl504046x
Sun Y Y Agiorgousis M L Zhang P Zhang S 2015 Nano Lett. 15 581 DOI: 10.1021/jacs.7b11332
Nie R Mehta A Park B W Kwon H W Im J Seok S I 2018 J. Am. Chem. Soc. 140 872 DOI: 10.1021/acs.chemmater.5b04213
Meng W Saparov B Hong F Wang J Mitzi D B Yan Y 2016 Chemistry of Materials 28 821 DOI: 10.1016/j.nanoen.2016.02.020
Perera S Hui H Zhao C Xue H Sun F Deng C Gross N Milleville C Xu X Watson D F 2016 Nano Energy 22 129 DOI: 10.1002/adma.201604733
Niu S Huyan H Liu Y Yeung M Ye K Blankemeier L Orvis T Sarkar D Singh D J Kapadia R 2017 Advanced Materials 29 1604733 DOI: 10.1021/acsomega.0c00740
Wei X Hui H Perera S Sheng A Watson D F Sun Y Y Jia Q Zhang S Zeng H 2020 ACS Omega 5 18579 DOI: 10.1103/PhysRevB.91.075204
Park J S Yang J H Kanevce A Choi S Repins I L Wei S H 2015 Physical Review B 91 075204 DOI: 10.1002/aenm.v2.4
Walsh A Chen S Wei S H Gong X G 2012 Advanced Energy Materials 2 400 DOI: 10.1103/PhysRevB.79.165211
Chen S Gong X Walsh A Wei S H 2009 Phys. Rev. B 79 165211 DOI: 10.1039/C7TA09713A
Zhang P Yang J Wei S H 2018 J. Mater. Chem. A 6 1809 DOI: 10.1021/acs.jpclett.7b02992
Yang J Zhang P Wei S H 2018 J. Phys. Chem. Lett. 9 31 DOI: 10.1021/jacs.7b02227
Xiao Z Du K-Z Meng W Wang J Mitzi D B Yan Y 2017 J. Am. Chem. Soc. 139 6054 DOI: 10.1021/ja508464w
Lee B Stoumpos C C Zhou N Hao F Malliakas C Yeh C Y Marks T J Kanatzidis M G Chang R P 2014 J. Am. Chem. Soc. 136 15379 DOI: 10.1039/C5CP03102H
Xiao Z Zhou Y Hosono H Kamiya T 2015 Phys. Chem. Chem. Phys. 17 18900 DOI: 10.1021/jacs.6b03207
Maughan A E Ganose A M Bordelon M M Miller E M Scanlon D O Neilson J R 2016 J. Am. Chem. Soc. 138 8453 DOI: 10.1021/acs.chemmater.6b00433
Saparov B Sun J P Meng W Xiao Z Duan H S Gunawan O Shin D Hill I G Yan Y Mitzi D B 2016 Chem. Mater. 28 2315 DOI: 10.1021/acs.jpclett.6b01041
Filip M R Hillman S Haghighirad A A Snaith H J Giustino F 2016 J. Phys. Chem. Lett. 7 2579 DOI: 10.1021/acs.chemmater.5b04231
McClure E T Ball M R Windl W Woodward P M 2016 Chem. Mater. 28 1348 DOI: 10.1021/jacs.5b13294
Slavney A H Hu T Lindenberg A M Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138 DOI: 10.1021/acs.jpclett.6b00376
Volonakis G Filip M R Haghighirad A A Sakai N Wenger B Snaith H J Giustino F 2016 J. Phys. Chem. Lett. 7 1254 DOI: 10.1021/acs.jpclett.6b02682
Volonakis G Haghighirad A A Milot R L Sio W H Filip M R Wenger B Johnston M B Herz L M Snaith H J Giustino F 2017 J. Phys. Chem. Lett. 8 772 DOI: 10.1021/jacs.7b02120
Zhao X G Yang D Sun Y Li T Zhang L Yu L Zunger A 2017 J. Am. Chem. Soc. 139 6718 DOI: 10.1038/s41566-017-0012-4
Pan W Wu H Luo J Deng Z Ge C Chen C Jiang X Yin W J Niu G Zhu L 2017 Nat. Photonics 11 726 DOI: 10.1021/acsphotonics.7b00837
Luo J Li S Wu H Zhou Y Li Y Liu J Li J Li K Yi F Niu G Tang J 2018 ACS Photonics 5 398 DOI: 10.1023/A:1009430530367
da Fonseca R Sosman L Tavares A D Bordallo H 2000 J. Fluoresc. 10 375 DOI: 10.1103/PhysRevB.34.6647
Aull B F Jenssen H P 1986 Phys. Rev. B 34 6647 DOI: 10.1002/smll.v14.11
Zhou L Xu Y F Chen B X Kuang D B Su C Y 2018 Small 14 1703762 DOI: 10.1039/C8CC01982G
Nag A 2018 Chem. Commun. 54 5205 DOI: 10.1039/C7TC04411A
Deng T Song E Zhou Y Wang L Zhang Q 2017 J. Mater. Chem. C 5 12422 DOI: 10.1002/adfm.v28.29
Tan Z Li J Zhang C Li Z Hu Q Xiao Z Kamiya T Hosono H Niu G Lifshitz E 2018 Adv. Funct. Mater. 28 1801131
Luo J Wang X Li S Liu J Guo Y Niu G Yao L Fu Y Gao L Dong Q Zhao C Leng M Ma F Liang W Wang L Jin S Han J Zhang L Etheridge J Wang J Yan Y Sargent E H Tang J 2018 Nature 563 541 DOI: 10.1038/s41586-018-0691-0
Slavney A H Hu T Lindenberg A M Karunadasa H I 2016 J Am Chem Soc 138 2138 DOI: 10.1021/jacs.5b13294
McClure E T Ball M R Windl W Woodward P M 2016 Chemistry of Materials 28 1348 DOI: 10.1021/acs.chemmater.5b04231
Ji F Klarbring J Wang F Ning W Wang L Yin C Figueroa J S M Christensen C K Etter M Ederth T Sun L Simak S I Abrikosov I A Gao F 2020 Angew. Chem., Int. Ed. 59 15191 DOI: 10.1002/anie.v59.35
Yang Y Gao F Gao S Wei S-H 2018 J. Mater. Chem. A 6 14949 DOI: 10.1039/C8TA01496E
Wang J Chen H Wei S H Yin W J 2019 Adv. Mater. 31 e1806593 DOI: 10.1002/adma.201806593
Smith I C Hoke E T Solis-Ibarra D McGehee M D Karunadasa H I 2014 Angew. Chem., Int. Ed. 53 11232 DOI: 10.1002/anie.201406466
Quan L N Yuan M Comin R Voznyy O Beauregard E M Hoogland S Buin A Kirmani A R Zhao K Amassian A 2016 J. Am. Chem. Soc. 138 2649 DOI: 10.1021/jacs.5b11740
Tsai H Nie W Blancon J C Stoumpos C C Asadpour R Harutyunyan B Neukirch A J Verduzco R Crochet J J Tretiak S 2016 Nature 536 312 DOI: 10.1038/nature18306
Liu J Xue Y Wang Z Xu Z Q Zheng C Weber B Song J Wang Y Lu Y Zhang Y 2016 ACS Nano 10 3536 DOI: 10.1021/acsnano.5b07791
Yang J H Yuan Q Yakobson B I 2016 J. Phys. Chem. C 120 24682 DOI: 10.1021/acs.jpcc.6b10162
Huang K Lai K Yan C-L Zhang W-B 2017 J. Chem. Phys. 147 164703 DOI: 10.1063/1.4999244
Green M A Dunlop E D Levi D H Hohl-Ebinger J Yoshita M Ho-Baillie A W Y 2019 Prog. Photovolt. Res. Appl. 27 565 DOI: 10.1002/pip.v27.7
Deng H X Wei S H Li S S Li J Walsh A 2013 Phys. Rev. B 87 125203 DOI: 10.1103/PhysRevB.87.125203
Deng H X Luo J W Wei S H 2018 Chin. Phys. B 27 117104 DOI: 10.1088/1674-1056/27/11/117104
Kim J Lee S H Lee J H Hong K H 2014 J. Phys. Chem. Lett. 5 1312 DOI: 10.1021/jz500370k
Du M H 2015 J. Phys. Chem. Lett. 6 1461 DOI: 10.1021/acs.jpclett.5b00199
Haque M A Li J L Abdelhady A L Saidaminov M I Baran D Bakr O M Wei S H Wu T 2019 Adv. Opt. Mater. 7 1900865 DOI: 10.1002/adom.v7.22
Zhang P Yu S Zhang X Wei S H 2019 Phys. Rev. Mater. 3 055201 DOI: 10.1103/PhysRevMaterials.3.055201
Wang R Zhang X He J Ma C Xu L Sheng P Huang F 2017 J. Alloys Compd. 695 555 DOI: 10.1016/j.jallcom.2016.11.125
Abdelhady A L Saidaminov M I Murali B Adinolfi V Voznyy O Katsiev K Alarousu E Comin R Dursun I Sinatra L 2016 J. Phys. Chem. Lett. 7 295 DOI: 10.1021/acs.jpclett.5b02681
Yamada Y Hoyano M Akashi R Oto K Kanemitsu Y 2017 J. Phys. Chem. Lett. 8 5798 DOI: 10.1021/acs.jpclett.7b02508
Nayak P K Sendner M Wenger B Wang Z Sharma K Ramadan A J Lovrinčić R Pucci A Madhu P Snaith H J 2018 J. Am. Chem. Soc. 140 574 DOI: 10.1021/jacs.7b11125
Zhang S Chadi D 1990 Phys. Rev. B 42 7174 DOI: 10.1103/PhysRevB.42.7174
Chadi D Chang K J 1988 Phys. Rev. Lett. 61 873 DOI: 10.1103/PhysRevLett.61.873
Thio T Bennett J Becla P 1996 Phys. Rev. B 54 1754 DOI: 10.1103/PhysRevB.54.1754
Espinosa F de Leon J M Conradson S Pena J Zapata-Torres M 1999 Phys. Rev. Lett. 83 3446 DOI: 10.1103/PhysRevLett.83.3446
Wei S-H Zhang S 2002 Phys. Rev. B 66 155211 DOI: 10.1103/PhysRevB.66.155211
Wang J Li W Yin W J 2020 Adv. Mater. 32 1906115 DOI: 10.1002/adma.v32.6
Ulatowski A M Wright A D Wenger B Buizza L R Motti S G Eggimann H J Savill K J Borchert J Snaith H J Johnston M B 2020 J. Phys. Chem. Lett. 11 3681 DOI: 10.1021/acs.jpclett.0c01048
Chopra K Major S Pandya D 1983 Thin Solid Films 102 1 DOI: 10.1016/0040-6090(83)90256-0
Nomura K Ohta H Ueda K Kamiya T Hirano M Hosono H 2003 Science 300 1269 DOI: 10.1126/science.1083212
Wager J F 2003 Science 300 1245 DOI: 10.1126/science.1085276
Nomura K Ohta H Takagi A Kamiya T Hirano M Hosono H 2004 Nature 432 488 DOI: 10.1038/nature03090
Minami T 2005 Semicond. Sci. Technol. 20 S35 DOI: 10.1088/0268-1242/20/4/004
Granqvist C G 2007 Sol. Energy Mater. Sol. Cells 91 1529 DOI: 10.1016/j.solmat.2007.04.031
Zhang K H Xi K Blamire M G Egdell R G 2016 J. Phys.: Condens. Matter 28 383002 DOI: 10.1088/0953-8984/28/38/383002
[1] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[2] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[3] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[4] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[5] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[6] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[7] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[8] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[9] Ground-state phases and spin textures of spin-orbit-coupled dipolar Bose-Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[10] Improving the performance of crystalline Si solar cell by high-pressure hydrogenation
Xi-Yuan Dai(戴希远), Yu-Chen Zhang(张宇宸), Liang-Xin Wang(王亮兴), Fei Hu(胡斐), Zhi-Yuan Yu(于志远), Shuai Li(李帅), Shu-Jie Li(李树杰), Xin-Ju Yang(杨新菊), and Ming Lu(陆明). Chin. Phys. B, 2020, 29(11): 118801.
[11] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[12] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[13] The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells
Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民). Chin. Phys. B, 2019, 28(9): 098201.
[14] The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙). Chin. Phys. B, 2019, 28(9): 098802.
[15] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
No Suggested Reading articles found!