Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 113202    DOI: 10.1088/1674-1056/abb3de

Nonadiabatic molecular dynamics simulation of ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$ in a strong laser field

Ji-Gen Chen(陈基根)1, Gang-Tai Zhang(张刚台)2, Ting-Ting Bai(白婷婷)3, Jun Wang(王俊)4, †, Ping-Ping Chen(陈平平)5,, ‡, Wei-Wei Yu(于伟威)6,§, and Xi Zhao(赵曦)7,8,9,
1 Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Taizhou 225300, China
2 College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
3 College of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China
4 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
5 Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, USA
6 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
7 School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
8 School of Physics and Electronics, Qiannan Normal College For Nationalities, Guizhou Province, Duyun 558000, China
9 Department of Physics, Kansas State University, Manhattan, KS 66506, USA

We investigate the alignment dependence of the strong laser dissociation dynamics of molecule ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$ in the frame of real-time and real-space time-dependent density function theory coupled with nonadiabatic quantum molecular dynamics (TDDFT-MD) simulation. This work is based on a recent experiment study “ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene” [Wolter et al, Science 354, 308–312 (2016)]. Our simulations are in excellent agreement with the experimental data and the analysis confirms that the alignment dependence of the proton dissociation dynamics comes from the electron response of the driving laser pulse. Our results validate the ability of the TDDFT-MD method to reveal the underlying mechanism of experimentally observed and control molecular dissociation dynamics.

Keywords:  strong field physics      molecular dynamics      TDDFT      attosecond science      ultra fast optics  
Received:  19 February 2020      Revised:  19 August 2020      Accepted manuscript online:  01 September 2020
Fund: Xi Zhao was supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Grant No. DE-FG02-86ER13491), the National Natural Science Foundation of China (Grant No. 11904192); Ji-Gen Chen was supported by the National Natural Science Foundation of China (Grant No. 11975012); Gang-Tai Zhang was supported by the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2016JM1012), the Natural Science Foundation of the Educational Department of Shaanxi Province, China (Grant No. 18JK0050), the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK16069); Jun Wang was supported by the National Natural Science Foundation of China (Grant Nos. 11604119 and 11627807); and Wei-Wei Yu was supported by the National Natural Science Foundation of China (Grant No. 11604131).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail: §Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Ji-Gen Chen(陈基根), Gang-Tai Zhang(张刚台), Ting-Ting Bai(白婷婷), Jun Wang(王俊), Ping-Ping Chen(陈平平), Wei-Wei Yu(于伟威)§, and Xi Zhao(赵曦)¶ Nonadiabatic molecular dynamics simulation of ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$ in a strong laser field 2020 Chin. Phys. B 29 113202

Fig. 1.  

The calculated relevant energy levels and two possible ionization–dissociation pathways. The lowest line is the ground state of neutral ground state ${}^{1}{\Sigma }_{{\rm{g}}}^{+}$. The two green lines are the ground and excited states 2Πu, ${}^{2}{\Sigma }_{{\rm{g}}}^{+}$ of ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{1+}$. The upper six lines are the states of ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$.

Fig. 2.  

Schematic geometry and initial electron density distribution of the ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$ molecule.

Fig. 3.  

The temporal profile of the electric field.

Fig. 4.  

Time evolution of chemical band C–H, C–C in (a) parallel and (b) perpendicular orientations.

Fig. 5.  

Force analysis of H1 [(a) and (b)] and H2 [(c) and (d)] with parallel [(a) and (c)] and perpendicular orientations [(b) and (d)]. The red line, green dash dot–dot line, blue dash–dot–dash line, and black dash line are the total force, electron force, laser force, and ion force, respectively.

Fig. 6.  

(a) Time evolution of RCH1 with parallel (blue dash line), perpendicular (red solid line), and the laser-free case (black dash line). (b) The ratio of the ionization yield between parallel and perpendicular orientations.

Fig. 7.  

Slice of the electron density distribution at t = 5.8 fs for (a) perpendicular and (b) parallel orientations.

Fig. 8.  

Time evolution of N–N band length with parallel (red line) and perpendicular (blue dash line) orientations. The laser parameters are the same as those in Fig. 5.

Wolter B Pullen M G Le A T Baudisch M Doblhoff-Dier K Senftleben A Hemmer M Schröter C D Ullrich J Pfeifer T Moshammer R Gräfe S Vendrell O Lin C D Biegert J 2016 Science 345 308
Ackermann W et al. 2007 Nat. Photon. 1 336 DOI: 10.1038/nphoton.2007.76
Lopez C Trimeche A Comparat D Picard Y J 2019 Phys. Rev. Appl. 11 064049 DOI: 10.1103/PhysRevApplied.11.064049
Hentschel M Kienberger R Spielmann C Reider G A Milosevic N Brabec T Corkum P Heinzmann U Drescher M Krausz F 2001 Nature 414 509 DOI: 10.1038/35107000
Zhao Y T Xu X Q Jiang S C Zhao X Chen J G Yang Y J 2020 Phys. Rev. A 101 033413 DOI: 10.1103/PhysRevA.101.033413
Zhao Y T Jiang S C Zhao X Chen J G Yang Y J 2020 Opt. Lett. 45 2874 DOI: 10.1364/OL.389787
Paul P M Toma E S Breger P Mullot G Augé F Balcou P Muller H G Agostini P 2001 Science 292 1689 DOI: 10.1126/science.1059413
Martin J M Bade S Dubosclard W Khan M A Kim S Garraway B M Alzar C L G 2019 Phys. Rev. Appl. 12 014033 DOI: 10.1103/PhysRevApplied.12.014033
Hentschel M Kienberger R Spielmann C Reider G A Milosevic N Brabec T Corkum P Heinzmann U Drescher M Krausz F 2001 Nature 414 509 DOI: 10.1038/35107000
Guan J Behrendt V Shen P Hofsass S Muthu-Arachchige T Grzesiak J Stienkemeier F Dulitz K 2019 Phys. Rev. Appl. 11 054073 DOI: 10.1103/PhysRevApplied.11.054073
Drescher M Hentschel M Kienberger R Uiberacker M Yakovlev V Scrinzi A Westerwalbesloh T Kleineberg U Heinzmann U Krausz F 2002 Nature 419 803 DOI: 10.1038/nature01143
Schiffrin A Paasch-Colberg T Karpowicz N Apalkov V Gerster D Muhlbrandt S Korbman M Reichert J Schultze M Holzner S Barth J V Kienberger R Ernstorfer R Yakovlev V S Stockman M I Krausz F 2013 Nature 493 70 DOI: 10.1038/nature11567
Zhao Y Ma S Jiang S Yang Y Zhao X Chen J 2019 Opt. Express 27 34392 DOI: 10.1364/OE.27.034392
Zhao X Wei H Wu Y Lin C D 2017 Phys. Rev. A 95 043407 DOI: 10.1103/PhysRevA.95.043407
Zhao X Wei H Yu W W Wang S J Lin C D 2020 Phys. Rev. Appl. 13 034043 DOI: 10.1103/PhysRevApplied.13.034043
Griesser H P Perrella C Light P S Luiten A N 2019 Phys. Rev. Appl. 11 054026 DOI: 10.1103/PhysRevApplied.11.054026
Luo Y Zhang P 2019 Phys. Rev. Appl. 12 044056 DOI: 10.1103/PhysRevApplied.12.044056
Haruyama J Hu C Watanabe K 2012 Phys. Rev. A 85 062511 DOI: 10.1103/PhysRevA.85.062511
Russakoff A Varga K 2015 Phys. Rev. A 92 053413 DOI: 10.1103/PhysRevA.92.053413
Telnov D A Chu S I 2009 Phys. Rev. A 80 043412 DOI: 10.1103/PhysRevA.80.043412
Le Breton G Rubio A Tancogne-Dejean N 2018 Phys. Rev. B 98 165308 DOI: 10.1103/PhysRevB.98.165308
Tully J C Preston R K 1971 J. Chem. Phys. 55 562 DOI: 10.1063/1.1675788
Meyer H D Manthe U Cederbaum L S 1990 Chem. Phys. Lett. 165 73 DOI: 10.1016/0009-2614(90)87014-I
Xue S Du H Hu B Lin C D Le A T 2018 Phys. Rev. A 97 043409 DOI: 10.1103/PhysRevA.97.043409
Andrade X Alberdi-Rodriguez J Strubbe D A Oliveira M J T Nogueira F Castro A Muguerza J Arruabarrena A Louie S G Aspuru-Guzik A 2012 J. Phys.: Condens. Matter 24 233202 DOI: 10.1088/0953-8984/24/23/233202
Casto A Appel H Oliveira M Rozzi C A Andrade X Lorenzen F Marques M A L Gross E K U Rubio A 2006 Phys. Status Solidi B 243 2465 DOI: 10.1002/(ISSN)1521-3951
Marques M A L Castro A Bertsha G F Rubio A 2003 Comput. Phys. Commun. 151 60 DOI: 10.1016/S0010-4655(02)00686-0
Troullier N Martins J L 1991 Phys. Rev. B 43 1993 DOI: 10.1103/PhysRevB.43.1993
Perdew J P Zunger A 1981 Phys. Rev. B 23 5048 DOI: 10.1103/PhysRevB.23.5048
Doblhoff-Dier K Kitzler M Gräfe S 2016 Phys. Rev. A 94 013405 DOI: 10.1103/PhysRevA.94.013405
[1] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[2] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[3] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[6] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[7] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[8] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[9] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[10] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[11] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[12] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[13] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[14] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[15] Influence of external load on friction coefficient of Fe-polytetrafluoroethylene
Xiu-Hong Hao(郝秀红), Deng Pan(潘登), Ze-Yang Zhang(张泽洋), Shu-Qiang Wang(王树强), Yu-Jin Gao(高玉金), Da-Peng Gu(谷大鹏). Chin. Phys. B, 2020, 29(4): 046802.
No Suggested Reading articles found!