Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017503    DOI: 10.1088/1674-1056/abb311
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes

Xiang Yu(俞翔)†, Yan Mi(米岩)†, Li-Chen Wang(王利晨)†, Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉)‡
Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  Tumor-targeted magnetic hyperthermia has recently attracted much attention. Magnetic nanoparticles (NPs) are heat mediator nanoprobes in magnetic hyperthermia for cancer treatment. In this paper, single cubic spinel structural Zn0.3Fe2.7O4 magnetic NPs with sizes of 14 nm-20 nm were synthesized, followed by coating with SiO2 shell. The SLP value of Zn0.3Fe2.7O4/SiO2 NPs below 20 nm changes non-monotonically with the concentration of solution under the alternating current (AC) magnetic field of 430 kHz and 27 kA/m. SLP values of all Zn0.3Fe2.7O4/SiO2 NPs appear a peak value with change of solution concentration. The solution concentrations with optimal SLP value decrease with increasing magnetic core size. This work can give guidance to the better prediction and control of the magnetic hyperthermia performance of materials in clinical applications.
Keywords:  magnetic nanoparticles      dipolar interaction      magnetic hyperthermia  
Revised:  20 August 2020      Published:  04 January 2021
PACS:  75.50.Mm (Magnetic liquids)  
  75.47.Lx (Magnetic oxides)  
  76.60.Es (Relaxation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51771124, 51571146, and 51701130).
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: shulihe@cnu.edu.cn   

Cite this article: 

Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉) Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes 2021 Chin. Phys. B 30 017503

1 Yoo D, Jeong H, Noh S H, Lee J H and Cheon J 2013 Angew. Chem. Int. Edit. 52 13047
2 Yu K, Liang B, Zheng Y, Exner A, Kolios M, Xu T, Guo D, Cai X, Wang Z, Ran H, Chu L and Deng Z 2019 Theranostics 9 4192
3 Jang J T, Lee J, Seon J, Ju E, Kim M, Kim Y I, Kim M G, Takemura Y, Arbab A S, Wang K W, Kang K W, Park, K H, Paek S H and Bae S 2018 Adv. Mater. 30 1704362
4 Wu H, Liu L, Song L, Ma M, Gu N and Zhang Y 2019 ACS Nano 13 14013
5 Wang B, Chan K F, Yu J, Wang Q, Yang L, Chiu P W Y and Zhang L 2018 Adv. Funct. Mater. 28 1705701
6 Jang J T, Nah H, Lee J H, Moon S H, Kim M G and Cheon J 2009 Angew. Chem. Int. Edit. 48 1234
7 Liu X L, Yang Y, Ng C T, Zhao L Y, Zhang Y, Bay B H, Fan H M and Ding J 2015 Adv. Mater. 27 1939
8 Guardia P, Corato D R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L and Pellegrino T 2012 ACS Nnano 6 3080
9 Lee J H, Jang J T, Choi J, Moon S H, Noh S H, Kim J W, Kim J G, Kim I S, Park K I and Cheon J 2011 Nat. Nanotech. 6 418
10 He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov R and Zeng H 2018 Small 14 1800135
11 Serantes D, Baldomir D, Martinez-Boubeta C, Simeonidis K, Angelakeris M, Natividad E, Castro M, Mediano A, Chen D X, Sanchez A, Balcells LI and Martìnez B 2010 J. Appl. Phys. 108 073918
12 Landi G T 2014 Phys. Rev. B 89 014403
13 Haase C and Nowak U 2012 Phys. Rev. B 85 045435
14 Conde-Leboran I, Baldomir D, Martinez-Boubeta C, Chubykalo-Fesenko O, Morales M P, Salas G, Cabrera D, Camarero J, Teran F J and Serantes D 2015 J. Phys. Chem. C 119 15698
15 Ovejero J G, Cabrera D, Carrey J, Valdivielso T, Salas G and Teran F J 2016 Phys. Chem. Chem. Phys. 18 10954
16 Mehdaoui B, Tan R P, Meffre A, Carrey J, Lachaize S, Chaudret B and Respaud M 2013 Phys. Rev. B 87 174419
17 Branquinho L C, Carri\ ao M S, Costa A S, Zufelato N, Sousa M H, Miotto R, Ivkov R and Bakuzis A F 2013 Sci. Rep. 3 2887
18 Fu R, Yan Y, Roberts C, Liu Z and Chen Y 2018 Sci. Rep. 8 4704
19 Wu L, Jubert P, Berman D, Imaino W I, Nelson A, Zhu H, Zhang S and Sun S 2014 Nano Lett. 14 3395
20 Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leboràn I, Kazakis I, Stefanou G, Pe\ na L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M and Angelakeris M 2012 Adv. Funct. Mater. 22 3737
21 Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
22 Jordan A, Wust P, Fählin H, John W, Hinz A and Felix R 1993 Int. J. Hyperthermia 9 51
23 Dutz S and Hergt R 2013 Int. J. Hyperthermia 29 790
24 Deatsch A E and Evans B A 2014 J. Magn. Magn. Mater. 354 163
25 Dennis C L, Jackson A J, Borchers J A, Hoopes P J, Strawbridge R, Foreman A R, Lierop J, Grüttner C and Ivkov R 2009 Nanotechnology 20 395103
26 Tan R P, Carrey J and Respaud M 2014 Phys. Rev. B 90 214421
[1] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[2] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[3] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[4] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[5] Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry
Wu-Qing Yang(杨武庆), Qi Li(李骐), Lin-Peng Yang(杨林鹏), Zi-Xiang Hu(胡自翔). Chin. Phys. B, 2019, 28(6): 067303.
[6] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[7] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[8] Ground-state vortex structures of a rotating binary dipolar Bose-Einstein condensate confined in harmonic plus quartic potential
Guang-Ping Chen(陈光平), Chang-Bing Qiao(乔昌兵), Hui Guo(郭慧), Lin-Xue Wang(王林雪), Ya-Jun Wang(王雅君), Ren-Bing Tan(谭仁兵). Chin. Phys. B, 2019, 28(1): 010308.
[9] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[10] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[11] Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
Qiu Qing-Wei, Xu Xiao-Wen, He Mang, Zhang Hong-Wang. Chin. Phys. B, 2015, 24(6): 067503.
[12] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li, Yang Yong, Wu Jian-Peng, Zhang Yi-Fan, Fan Hai-Ming, Ding Jun. Chin. Phys. B, 2015, 24(12): 127505.
[13] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin, Yu Jing, Hou Yang-Long. Chin. Phys. B, 2015, 24(1): 014704.
[14] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce, Hou Yang-Long, Gao Song. Chin. Phys. B, 2014, 23(5): 057505.
[15] A thermo-fluid analysis in magnetic hyperthermia
Iordana Astefanoaei, Ioan Dumitru, Alexandru Stancu, Horia Chiriac. Chin. Phys. B, 2014, 23(4): 044401.
No Suggested Reading articles found!