Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018102    DOI: 10.1088/1674-1056/abb30f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect

Zhao Li(李钊), Jing-Ping Xu(徐静平)†, Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿)
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A facile method of combining the defect engineering with the dielectric-screening effect is proposed to improve the electrical performance of MoS2 transistors. It is found that the carrier mobility of the transistor after the sulfur treatment on the MoS2 channel is greatly enhanced due to the reduction of the sulfur vacancies during vulcanization of MoS2. Furthermore, as compared to those transistors with HfO2 and SiO2 as the gate dielectric, the Al2O3-gate dielectric MoS2 FET shows a better electrical performance after the sulfur treatment, with a lowered subthreshold swing of 179.4 mV/dec, an increased on/off ratio of 2.11 × 106, and an enhanced carrier mobility of 64.74 cm2/Vs (about twice increase relative to the non-treated MoS2 transistor with SiO2 as the gate dielectric). These are mainly attributed to the fact that a suitable k-value gate dielectric can produce a dominant dielectric-screening effect overwhelming the phonon scattering, increasing the carrier mobility, while a larger k-value gate dielectric will enhance the phonon scattering to counteract the dielectric-screening effect, reducing the carrier mobility.
Keywords:  MoS2 transistor      sulfur vacancy      high-k dielectric      mobility  
Received:  30 June 2020      Revised:  19 August 2020      Accepted manuscript online:  27 August 2020
PACS:  81.65.Rv (Passivation)  
  77.22.Ch (Permittivity (dielectric function))  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774064, 61974048, and 61851406).
Corresponding Authors:  Corresponding author. E-mail: jpxu@hust.edu.cn   

Cite this article: 

Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿) Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect 2021 Chin. Phys. B 30 018102

1 Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
2 Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
3 Novoselov K S. Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
4 Yu Z, Ong Z Y, Li S L, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X R 2017 Adv. Funct. Mater. 27 1604093
5 Min S W, Lee H S, Choi H J, Park M K, Nam T, Kim H, Ryu S and Im S 2013 Nanoscale 5 548
6 Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W and Kim K 2012 Nat. Commun. 3 1011
7 Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S and Im S 2012 Small 8 3111
8 Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246
9 Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
10 Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674
11 Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
12 Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L J, Wang B G, Sun L T, Wang J L, Zhang G, Zhang Y W, Shi Y and Wang X R 2014 Nat. Commun. 5 5290
13 Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317
14 Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
15 Ong Z Y and Fischetti M V 2013 Phys. Rev. B 88 165316
16 Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L and Wang X R 2013 Nat. Commun. 4 2642
17 Ma N and Jena D2014 Phys. Rev. X 4 011043
18 Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N and Akinwande D 2013 ACS Nano 7 5446
19 Li T, Wan B S, Du G, Zhang B S and Zeng Z M 2015 AIP Adv. 5 057102
20 Kang J H, Liu W and Banerjee K 2014 Appl. Phys. Lett. 104 093106
21 Benameur M M, Radisavljevic B, Heron J S, Sahoo S, Berger H and Kis A 2011 Nanotechnology 22 125706
22 Zhang Y W, Li H, Wang H M, Xie H, Liu R, Zhang S L and Qiu Z J 2016 Sci. Rep. 6 29615
23 Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128
24 Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J and Hersam M C 2013 Appl. Phys. Lett. 102 173107
25 Leong W S, Li Y, Luo X, Nai C T, Quek S Y and Thong J T 2015 Nanoscale 7 10823
26 Nan H Y, Wang Z L, Wang W H, Liang Z, Lu Y, Chen Q, He D W, Tan P H, Miao F, Wang X R, Wang J L and Ni Z H 2014 ACS Nano 8 5738
27 Liu H and Ye P D 2012 IEEE Electron Device Lett. 33 546
28 Lembke D and Kis A 2012 ACS Nano 6 10070
29 Konar A, Fang T and Jena D 2010 Phys. Rev. B 82 115452
[1] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[2] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[3] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[4] Facile and fast growth of high mobility nanoribbons of ZrTe5
Jingyue Wang(王璟岳), Jingjing Niu(牛晶晶), Xinqi Li(李新祺), Xiumei Ma(马秀梅), Yuan Yao(姚湲), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(6): 068102.
[5] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[6] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[7] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
[8] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[9] PBTI stress-induced 1/ f noise in n-channel FinFET
Dan-Yang Chen(陈丹旸), Jin-Shun Bi(毕津顺), Kai Xi(习凯), and Gang Wang(王刚). Chin. Phys. B, 2020, 29(12): 128501.
[10] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[11] Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor
Ya-Mei Dou(窦亚梅), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Xiao-Song Zhao(赵晓松), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(6): 066804.
[12] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[13] Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明). Chin. Phys. B, 2019, 28(2): 028101.
[14] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[15] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
No Suggested Reading articles found!