Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018501    DOI: 10.1088/1674-1056/abb30d

Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs

Zhi-Hang Tong(童志航)1,2, Peng Ding(丁芃)1,2, Yong-Bo Su(苏永波)1,2, Da-Hai Wang(王大海)1, and Zhi Jin(金智)1,2,
1 High-Frequency High-Voltage Device and Integrated Circuits Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 University of Chinese Academic of Sciences, Beijing 100049, China
Abstract  The T-gate stem height of InAlAs/InGaAs InP-based high electron mobility transistor (HEMT) is increased from 165 nm to 250 nm. The influences of increasing the gate stem height on the direct current (DC) and radio frequency (RF) performances of device are investigated. A 120-nm-long gate, 250-nm-high gate stem device exhibits a higher threshold voltage (V th) of 60 mV than a 120-nm-long gate devices with a short gate stem, caused by more Pt distributions on the gate foot edges of the high Ti/Pt/Au gate. The Pt distribution in Schottky contact metal is found to increase with the gate stem height or the gate length increasing, and thus enhancing the Schottky barrier height and expanding the gate length,which can be due to the increased internal tensile stress of Pt. The more Pt distributions for the high gate stem device also lead to more obvious Pt sinking, which reduces the distance between the gate and the InGaAs channel so that the transconductance (g m) of the high gate stem device is 70 mS/mm larger than that of the short stem device. As for the RF performances, the gate extrinsic parasitic capacitance decreases and the intrinsic transconductance increases after the gate stem height has been increased, so the RF performances of device are obviously improved. The high gate stem device yields a maximum f t of 270 GHz and f max of 460 GHz, while the short gate stem device has a maximum f t of 240 GHz and the f max of 370 GHz.
Keywords:  InP-based HEMT      gate stem height      Pt/Ti Schottky contact      gate parasitic capacitances  
Revised:  30 July 2020      Published:  23 December 2020
PACS:  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61434006).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智) Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs 2021 Chin. Phys. B 30 018501

1 Sun S X, Chang M M, Li M K, Ma L H, Zhong Y H, Li Y X, Ding P, Jin Z and Wei Z C 2019 Chin Phys. B 28 078501
2 Chau R, Datta S, Doczy M, Doyle B, Jin B, Kavalieros J, Majumdar A, Metz M and Radosavljevic M 2005 IEEE Trans. Nanotechnol. 4 153
3 Zhong Y H, Wong W B, Yang J, Sun S X, Chang M M, Duan Z Y, Jin Z and Ding P 2020 Solid-State Electron. 164 107613
4 Murata K, Sano K, Kitabayashi H, Sugitani S, Sugahara H and Enoki T 2004 IEEE J. Solid-State Circuit 39 207
5 Kim D H and del Alamo J A 2010 IEEE Electron Dev. Lett. 31 806
6 Zhong Y H, Sun S X, Wong W B, et al. 2017 Front. Inform. Technol. Electron. Eng. 18 1180
7 Kim D H, Brar B and del Alamo J A 2011 International Electron Devices Meeting, December 5-7, 2011, Washington, DC, USA, p. 319
8 Mei, X B, Yoshida W, Lange M, et al.2015 IEEE Electron Dev. Lett. 36 327
9 Kim D H, del Alamo J A, Chen P, et al. liangjiedizhi 2010 International Electron Devices Meeting, December 6-8, 2010, San Francisco, USA, p. 692
10 Yun D Y, Jo H B, Son S W, et al. 2018 IEEE Electron Dev. Lett. 39 1844
11 Moran D A J, McLelland H, Elgaid K, et al.2006 IEEE Trans. Electron Dev. 53 2920
12 Endoh A, Shinohara K, Awano Y, et al. 2010 Jpn. J. Appl. Phys. 49 14301
13 Takahashi T, Sato M, Nakasha Y, et al. 2012 IEEE Electron Dev. Lett. 33 206
14 Yoshida Tomohiro, Kobayashi K, Otsuji T, et al. 2014 Solid-State Electron. 102 93
15 Wang Z X, Lin D, Liu J W, et al. 2020 Chin. Phys. B 29 027301
16 Shinohara, K, Matsui T, Yamashita Y, et al.2002 J. Vac. Sci. Technol. B 20 2096
17 Zhong Y H, Zang H P, Sun S X, et al. 2016 Chin. J. Electron. 25 199
18 Jang J H, Kim S and Adesida I 2006 Jpn. J. Appl. Phys. 45 3349
19 Dammann M, Leuther A, Benkhelifa F, et al. 2003 Phys. Status Solidi A-Appl. Mater. 195 81
20 Shin S H, Kim T W, Song J I, et al. 2011 Solid-State Electron. 62 106
21 Chu L.H, Chang E Y, Chang L, et al.2007 IEEE Electron Dev. Lett. 28 82
22 Saranovac T, Hambitzer A, Ruiz D C, et al. 2017 IEEE Trans. Semicond. Manuf. 30 462
23 Suemitsu T, Ishii T, Yokoyama H, et al. liangjiedizhi 1999 Jpn. J. Appl. Phys. 38 154
24 Katz A and Dautremontsmith W C 1990 J. Appl. Phys. 67 6237
25 Alt A R, Marti D and Bolognesi C R 2013 IEEE Microw. Mag. 14 83
26 Muhammad A, Ding P, Chen C, et al. 2019 J. Nanosci. Nanotechnol. 19 2537
27 Ding, P, Chen C, Ding W C, et al.2016 Solid-State Electron. 123 1
28 Sun S X, Yang B, Zhong Y H, et al. 2020 J. Phys. D: Appl. Phys. 53 175107
[1] Enhancement of radiation hardness of InP-based HEMT with double Si-doped plane
Ying-Hui Zhong(钟英辉), Bo Yang(杨博), Ming-Ming Chang(常明铭), Peng Ding(丁芃), Liu-Hong Ma(马刘红), Meng-Ke Li(李梦珂), Zhi-Yong Duan(段智勇), Jie Yang(杨洁), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2020, 29(3): 038502.
[2] Effects of proton irradiation at different incident angles on InAlAs/InGaAs InP-based HEMTs
Shu-Xiang Sun(孙树祥), Zhi-Chao Wei(魏志超), Peng-Hui Xia(夏鹏辉), Wen-Bin Wang(王文斌), Zhi-Yong Duan(段智勇), Yu-Xiao Li(李玉晓), Ying-Hui Zhong(钟英辉), Peng Ding(丁芃), Zhi Jin(金智). Chin. Phys. B, 2018, 27(2): 028502.
[3] Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTs
Shu-Xiang Sun(孙树祥), Hui-Fang Ji(吉慧芳), Hui-Juan Yao(姚会娟), Sheng Li(李胜), Zhi Jin(金智), Peng Ding(丁芃), Ying-Hui Zhong(钟英辉). Chin. Phys. B, 2016, 25(10): 108501.
No Suggested Reading articles found!