Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017101    DOI: 10.1088/1674-1056/abb30b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations

Chen-Shan Peng(彭春山)1,2, Yong-Dong Zhou(周永东)1, Sui-Shuan Zhang(张虽栓)1,2, and Zong-Yan Zhao(赵宗彦)1,
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2 Department of Architectural Engineering, Henan Quality Polytechnic, Pingdingshan 467000, China
Abstract  Constructing the hetrostructure is a feasible strategy to enhance the performances of photocatalysts. However, there are still some fundamental details and mechanisms for the specific design of photocatalysts with heterostructure, which need further confirming and explain. In this work, g-C3N4-based heterostructures are constructed with TiO2 in different ways, and their intrinsic factors to improve the photocatalytic activity are systematically studied by density functional theory (DFT). When g-C3N4 combines horizontally with TiO2 to form a heterostructure, the interaction between them is dominated by van der Waals interaction. Although the recombination of photo-generated electron-hole pair cannot be inhibited significantly, this van der Waals interaction can regulate the electronic structures of the two components, which is conducive to the participation of photo-generated electrons and holes in the photocatalytic reaction. When the g-C3N4 combines vertically with TiO2 to form a heterostructure, their interface states show obvious covalent features, which is very beneficial for the photo-generated electrons' and holes' transport along the opposite directions on both sides of the interface. Furthermore, the built-in electric field of g-C3N4/TiO2 heterostructure is directed from TiO2 layer to g-C3N4 layer under equilibrium, so the photo-generated electron-hole pairs can be spatially separated from each other. These calculated results show that no matter how g-C3N4 and TiO2 are combined together, the g-C3N4/TiO2 heterostructure can enhance the photocatalytic performance through corresponding ways.
Keywords:  photocatalysis      g-C3N4      TiO2      heterostructures      interfacial states  
Received:  03 June 2020      Revised:  07 August 2020      Accepted manuscript online:  27 August 2020
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
  81.05.Hd (Other semiconductors)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11964015).
Corresponding Authors:  Corresponding author. E-mail: zzy@kust.edu.cn   

Cite this article: 

Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦) Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations 2021 Chin. Phys. B 30 017101

1 Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K and Antonietti M 2009 Nat. Mater. 8 76
2 Lee H L, Sofer Z, Mazanek V, Luxa J, Chua C K and Pumera M 2017 Appl. Mater. Today 8 150
3 Lu X, Jin Y, Zhang X, Xu G, Wang D, Lv J, Zheng Z and Wu Y 2016 Dalton Transactions 45 15406
4 Mamba G and Mishra A 2016 Appl. Catalysis B: Environmental 198 347
5 Ye S, Wang R, Wu M Z and Yuan Y P 2015 Appl. Surf. Sci. 358 15
6 Zhang Q, Hu S, Fan Z, Liu D, Zhao Y, Ma H and Li F 2016 Dalton Transactions 45 3497
7 Zheng Y, Lin L, Wang B and Wang X 2015 Angew. Chem. Int. Ed. 54 12868
8 Zheng Y, Liu J, Liang J, Jaroniec M and Qiao S Z2012 Energy & Environmental Science 5 6717
9 Han Q, Wang B, Gao J, Cheng Z, Zhao Y, Zhang Z and Qu L 2016 ACS Nano 10 2745
10 Zhang M, Yao W, Lv Y, Bai X, Liu Y, Jiang W and Zhu Y 2014 J. Mater. Chem. A 2 11432
11 Zhang P, Li X, Shao C and Liu Y 2015 J. Mater. Chem. A 3 3281
12 Wang K, Li Q, Liu B, Cheng B, Ho W and Yu J 2015 Appl. Catalysis B: Environmental 176 44
13 Wang Y, Zhang J, Wang X, Antonietti M and Li H 2010 Angew. Chem. Int. Ed. 49 3356
14 Liu Q and Zhang J 2013 Langmuir 29 3821
15 Yue B, Li Q, Iwai H, Kako T and Ye J 2011 Sci. Technol. Adv. Mater. 12 034401
16 Amrollahi R, Hamdy M S and Mul G 2014 J. Catalysis 319 194
17 Qu A, Xu X, Xie H, Zhang Y, Li Y and Wang J 2016 Mater. Res. Bull. 80 167
18 Dai K, Lu L, Liang C, Zhu G, Liu Q, Geng L and He J 2015 Dalton Transactions 44 7903
19 Hao R, Wang G, Jiang C, Tang H and Xu Q 2017 Appl. Sur. Sci. 411 400
20 Hao X, Zhou J, Cui Z, Wang Y, Wang Y and Zou Z 2018 Appl. Catalysis B: Environmental 229 41
21 Jiang L, Yuan X, Zeng G, Liang J, Chen X, Yu H, Wang H, Wu Z, Zhang J and Xiong T 2018 Appl. Catalysis B: Environmental 227 376
22 Jo W K and Selvam N C S 2015 J. Hazardous Mater. 299 462
23 Low J, Cheng B and Yu J 2017 Appl. Surf. Sci. 392 658
24 Wen J, Li X, Liu W, Fang Y, Xie J and Xu Y 2015 Chin. J. Catalysis 36 2049
25 Xu J, Li Y, Zhou X, Li Y, Gao Z D, Song Y Y and Schmuki P 2016 Chemistry-A European Journal 22 3947
26 Han C, Wang Y, Lei Y, Wang B, Wu N, Shi Q and Li Q 2015 Nano Res. 8 1199
27 Pan C, Jia J, Hu X, Fan J and Liu E 2018 Appl. Surf. Sci. 430 283
28 Fu M, Pi J, Dong F, Duan Q and Guo H 2013 Int. J. Photoenergy 2013 158496
29 Ren B, Wang T, Qu G, Deng F, Liang D, Yang W and Liu M 2018 Environmental Science and Pollution Research 25 19122
30 Liu H, Zhang Z G, He H W, Wang X X, Zhang J, Zhang Q Q, Tong Y F, Liu H L, Ramakrishna S and Yan S Y 2018 Nanomaterials 8 842
31 Tan Y, Shu Z, Zhou J, Li T, Wang W and Zhao Z 2018 Appl. Catalysis B: Environmental 230 260
32 Hao R, Wang G, Tang H, Sun L, Xu C and Han D 2016 Appl. Catalysis B: Environmental 187 47
33 Xiao G, Xu S, Li P and Su H 2018 Nanotechnology 29 315601
34 Chen Y, Huang W, He D, Situ Y and Huang H 2014 ACS Appl. Mater. Inter. 6 14405
35 Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
36 Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K and Payne M C 2005 Zeitschrift für Kristallographie-Crystalline Mater. 220 567
37 Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
38 Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005
39 Pfrommer B G, C\oté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
40 Wu Y, Liu L M, An X and Wei T 2019 New J. Chem. 43 4511
41 Ar S R, Wilson H M, Momin B M, Annapure U S and Jha N 2020 Appl. Surf. Sci. 528 146930
42 Liu M, Wei S, Chen W, Gao L, Li X, Mao L and Dang H 2020 J. Chin. Chem. Soc-taip 67 246
43 Noda C, Asakura Y, Shiraki K, Yamakata A and Yin S 2020 Chem. Eng. J. 390 124616
44 Wu Z, Liang Y, Yuan X, Zou D, Fang J, Jiang L, Zhang J, Yang H and Xiao Z 2020 Chem. Eng. J. 394 124921
[1] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[2] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[3] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[4] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[5] Near-infrared photocatalysis based on upconversion nanomaterials
Xingyuan Guo(郭星原), Zhe Wang(王哲), Shengyan Yin(尹升燕), and Weiping Qin(秦伟平). Chin. Phys. B, 2022, 31(10): 108201.
[6] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[7] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
[8] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[9] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[10] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[11] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[12] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[13] Effect of graphene grain boundaries on MoS2/graphene heterostructures
Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟). Chin. Phys. B, 2020, 29(6): 067403.
[14] Superlubricity enabled dry transfer of non-encapsulated graphene
Zhe Ying(应哲), Aolin Deng(邓奥林), Bosai Lyu(吕博赛), Lele Wang(王乐乐), Takashi Taniguchi, Kenji Watanabe, Zhiwen Shi(史志文). Chin. Phys. B, 2019, 28(2): 028102.
[15] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
No Suggested Reading articles found!