Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010303    DOI: 10.1088/1674-1056/abb304
GENERAL Prev   Next  

Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement

Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发)
Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of\vglue2pt Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha\/ 410081, China
Abstract  The entropy squeezing of a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel is investigated in detail. Our results show that when coupled to the single-mode field, the atom in appropriate initial states can not only generate obvious entropy squeezing but also keep in the optimal squeezing state, while passing through the amplitude damping channel, the atom can generate entropy squeezing under the control of the weak measurement. Besides, it is proved again that as a measurement method for atomic squeezing, the entropy squeezing is precise and effective. Therefore our work is instructive for experiments in preparing three-level system information resource with ultra-low quantum noise.
Keywords:  entropy squeezing      V-type three-level atom      single-mode field      weak measurement  
Revised:  13 August 2020      Published:  25 January 2021
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064012 and 11374096).\vglue2pt
Corresponding Authors:  Corresponding author. E-mail: mffang@hunnu.edu.cn   

Cite this article: 

Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发) Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement 2021 Chin. Phys. B 30 010303

1 Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S Science 282 706 DOI: https://science.sciencemag.org/content/282/5389/7061998
2 Caves C M 1980 Phys. Rev. D 23 1693 DOI: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.1693
3 Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.47.5138
4 Wineland D J, Bollinger J J, Itano W M and Heinzen D J 1994 Phys. Rev. A 50 67 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.50.67
5 Sorensen A and Molmer K 1999 Phys. Rev. Lett. 83 2274 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.2274
6 Sorensen J L, Hald J and Polzik E S 1998 Phys. Rev. Lett. 80 3487 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.3487
7 Li X S, Lin D L and George T F 1989 Phys. Rev. A 40 2504 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.40.2504
8 Ashraf M M and Razmi M S K 1992 Phys. Rev. A 45 8121 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.8121
9 Zhou P and Peng J S 1991 Phys. Rev. A 44 3331 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.3331
10 Fang M F, Zhou P and Swain S 2000 J. Mod. Opt. 47 1043 DOI: https://www.tandfonline.com/doi/abs/10.1080/09500340008233404
11 Xiao X, Fang M F and Hu Y M 8949/84/04/045011 2011 Phys. Scr. 84 045011 DOI: https://iopscience.iop.org/article/10.1088/0031-
12 Yu M and Fang M F
13 Wang Y Y and Fang M F 1056/27/11/114207 2018 Chin. Phys. B 11 114207 DOI: https://rd.springer.com/article/10.1007 DOI: https://iopscience.iop.org/article/10.1088/1674-
14 Liu F F, Fang M F and Xu X 1056/28/6/060304 2019 Chin. Phys. B 6 060304 DOI: https://iopscience.iop.org/article/10.1088/1674-
15 Walborn S P, Lemelle D S, Almeida M P and Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.090501
16 Bourennane M, Karlsson A and Bjork G 2001 Phys. Rev. A 64 012306 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.64.012306
17 Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.127902
18 Durt T, Cerf N J, Gisin N and Zukowski M 2003 Phys. Rev. A 67 012311 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.012311
19 Jafarpour M and Ashrafpour M 012- 0419- 2 2013 Quantum Inf. Process. 12 761 DOI: https://rd.springer.com/article/10.1007/s11128-
20 Kaszlikowski D, Gnaciski P, Zukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.4418
21 Riccardi A, Macchiavello C and Maccone L 2017 Phys. Rev. A 95 032109 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.032109
22 Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and Fan H Phys. Rep. 762 1 DOI: https://www.sciencedirect.com/science/article/abs/pii/S03701573183018932018
23 Basit A, Badshah F, Ali H and Ge G Q 5075/118/30002 2017 Europhys. Lett. 118 30002 DOI: https://iopscience.iop.org/article/10.1209/0295-
24 Guo Y N, Tian Q L, Zeng K and Chen P X 020- 02675- 9 2020 Quantum Inf. Process. 19 182 DOI: https://rd.springer.com/article/10.1007/s11128-
25 Wang S C, Yu Z W, Zou W J and Wang X B 2014 Phys. Rev. A 89 022318 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.022318
26 Guo Y N, Fang M F, Wang G Y and Zeng K 016- 1296- x 2016 Quantum Inf. Process. 15 2851 DOI: https://rd.springer.com/article/10.1007/s11128-
27 Korotkov A N 1999 Phys. Rev. B 60 5737 DOI: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.60.5737
28 Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805 DOI: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.166805
29 Sun Q Q, Amri M A, Davidovich L and Zubairy M S 2010 Phys. Rev. A 82 052323 DOI: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.052323
30 Kim Y S, Lee J C, Kwon O and Kim Y H Nat. Phys. 8 117 DOI: https://www.nature.com/articles/nphys21782012
31 Xiao X and Li Y L 40036- 3 2013 Eur. Phys. J. D 67 204 DOI: https://link.springer.com/article/10.1140/epjd/e2013-
[1] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[2] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[3] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[4] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[5] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[6] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[7] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[8] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[9] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[10] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[11] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[12] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[13] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang, Xia Yun-Jie, Duan De-Yang, Zhang Lu, Gao Qiang. Chin. Phys. B, 2015, 24(4): 044205.
[14] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua. Chin. Phys. B, 2015, 24(12): 120302.
[15] Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach
H R Baghshahi, M K Tavassoly, A Behjat. Chin. Phys. B, 2014, 23(7): 074203.
No Suggested Reading articles found!