Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128104    DOI: 10.1088/1674-1056/abb221
Special Issue: SPECIAL TOPIC —Twistronics
TOPICAL REVIEW —Twistronics Prev   Next  

A review of experimental advances in twisted graphene moirè superlattice

Yanbang Chu(褚衍邦)1,2, Le Liu(刘乐) 1,2, Yalong Yuan(袁亚龙) 1,2, Cheng Shen(沈成)1,2, Rong Yang(杨蓉)1,3,4, Dongxia Shi(时东霞)1,2,3, Wei Yang(杨威)1,2,3,4,†, and Guangyu Zhang(张广宇)1,2,3,4,
1 Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Twisted moirè superlattice receives tremendous interests since the discovery of correlated insulating states and superconductivity in magic angle twist bilayer graphene (MA-TBG) [Nature 556 80 (2018), Nature 556 43 (2018)], even gives arise to a new field "twistronics" [Science 361 690 (2018)]. It is a new platform hosting strong electron correlations, providing an alternative for understanding unconventional superconductivity. In this article, we provide a review of recent experimental advances in the twisted moirè superlattice, from MA-TBG to twisted double bilayer graphene and other two-dimensional materials based moirè superlattice, covering correlated insulating states, superconductivity, magnetism, et al.
Keywords:  twisted 2D moirè superlattice      electron correlations      superconductivity      magnetism  
Received:  29 June 2020      Revised:  16 August 2020      Published:  02 December 2020
PACS:  81.05.U- (Carbon/carbon-based materials)  
  73.21.Cd (Superlattices)  
  73.50.-h (Electronic transport phenomena in thin films)  
  74.70.Wz (Carbon-based superconductors)  
Fund: Project supported by NSFC (Grants Nos. 11834017 and 61888102), the National Key Research and Development Program (Grant No. 2016YFA0300904), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDB-SSW-SLH004), the Strategic Priority Research Program of CAS (Grant Nos. XDB30000000 and XDB33000000), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G11).
Corresponding Authors:  Corresponding author. E-mail: wei.yang@iphy.ac.cn Corresponding author. E-mail: gyzhang@iphy.ac.cn   

Cite this article: 

Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇) A review of experimental advances in twisted graphene moirè superlattice 2020 Chin. Phys. B 29 128104

[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P Nature 556 80 DOI: 10.1038/nature261542018
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P Nature 556 43 DOI: 10.1038/nature261602018
[3] Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J and Dean C R Science 361 690 DOI: 10.1126/science.aat69812018
[4] Kittel C2005 Introduction to Solid State Physics(New York: John Wiley and Sons, Inc.)
[5] Beenakker C and van Houten H 1991 Quantum transport in semiconductor nanostructures (Amsterdam: Elsevier) 44 pp. 1-228 DOI: 10.1016/S0081-1947(08)60091-0
[6] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J Nat. Phy. 8 382 DOI: 10.1038/nphys22722012
[7] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P Nature 497 598 DOI: 10.1038/nature121862013
[8] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C Science 340 1427 DOI: 10.1126/science.12372402013
[9] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K Nature 497 594 DOI: 10.1038/nature121872013
[10] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G Nat. Mat. 12 792 DOI: 10.1038/nmat36952013
[11] Schmidt H, Rode J C, Smirnov D and Haug R J Nat. Commun. 5 5742 DOI: 10.1038/ncomms67422014
[12] Geim A K and Grigorieva I V Nature 499 419 DOI: 10.1038/nature123852013
[13] Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D and Watanabe K Nano Lett. 16 2387 DOI: 10.1021/acs.nanolett.5b051612016
[14] Bistritzer R and MacDonald A H Proc. Natl. Acad. Sci. USA 108 12233 DOI: 10.1073/pnas.11081741082011
[15] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J and Tutuc E Nano Lett. 16 1989 DOI: 10.1021/acs.nanolett.5b052632016
[16] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K Nature 574 653 DOI: 10.1038/s41586-019-1695-02019
[17] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C and Lombardo A Nat. Commun. 9 5387 DOI: 10.1038/s41467-018-07558-32018
[18] Wang L, Gao Y, Wen B, Han Z, Taniguchi T, Watanabe K, Koshino M, Hone J and Dean C R Science 350 1231 DOI: 10.1126/science.aad21022015
[19] Wang D, Chen G, Li C, et al. Phys. Rev. Lett. 116 126101 DOI: 10.1103/PhysRevLett.116.1261012016
[20] Woods C, Withers F, Zhu M, Cao Y, Yu G, Kozikov A, Shalom M B, Morozov S, Van Wijk M, Fasolino A, Katsnelson M I, Watanabe K, Taniguchi T, Geim A K, Mishchenko A and Novoselov K S 2016 Nat. Commun. 7 10800 DOI: 10.1038/ncomms10800
[21] Sanchez-Yamagishi J D, Taychatanapat T, Watanabe K, Taniguchi T, Yacoby A and Jarillo-Herrero P Phys. Rev. Lett. 108 076601 DOI: 10.1103/PhysRevLett.108.0766012012
[22] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P Phys. Rev. Lett. 117 116804 DOI: 10.1103/PhysRevLett.117.1168042016
[23] Yin L J, Qiao J B, Wang W X, Zuo W J, Yan W, Xu R, Dou R F, Nie J C and He L Phy. Rev. B 92 201408 DOI: 10.1103/PhysRevB.92.2014082015
[24] Luican A, Li G, Reina A, Kong J, Nair R, Novoselov K S, Geim A K and Andrei E Phys. Rev. Lett. 106 126802 DOI: 10.1103/PhysRevLett.106.1268022011
[25] Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R and Young A F Nat. Phy. 15 1011 DOI: 10.1038/s41567-019-0596-32019
[26] Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P Phys. Rev. Lett. 124 076801 DOI: 10.1103/PhysRevLett.124.0768012020
[27] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L and Efetov D K Nature 583 375 DOI: 10.1038/s41586-020-2459-62020
[28] Saito Y, Ge J, Watanabe K, Taniguchi T and Young A F Nat. Phys. 16 926 DOI: 10.1038/s41567-020-0928-32020
[29] Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S Nature 583 379 DOI: 10.1038/s41586-020-2473-82020
[30] Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O and Li J arXiv:2003.11072 https://arxiv.org/abs/2003.110722020
[31] Bruin J A N, Sakai H, Perry R S and Mackenzie A P Science 339 804 DOI: 10.1126/science.12276122013
[32] Wu F, Hwang E and Das Sarma S Phy. Rev. B 99 165112 DOI: 10.1103/PhysRevB.99.1651122019
[33] Sharma G, Yudhistira I, Chakraborty N, Ho D Y, Fuhrer M S, Vignale G and Adam S arXiv:2003.00018 https://arxiv.org/abs/2003.000182020
[34] Ghawri B, Mahapatra P S, Mandal S, Jayaraman A, Garg M, Watanabe K, Taniguchi T, Krishnamurthy H, Jain M and Banerjee S arXiv:2004.12356 https://arxiv.org/abs/2004.123562020
[35] Cao Y, Rodan-Legrain D, Park J M, Yuan F N, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P arXiv:2004.04148 https://arxiv.org/abs/2004.041482020
[36] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R Science 363 1059 DOI: 10.1126/science.aav19102019
[37] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D Science 365 605 DOI: 10.1126/science.aaw37802019
[38] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F Science 367 900 DOI: 10.1126/science.aay55332020
[39] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F Nat. Phy. 15 237 DOI: 10.1038/s41567-018-0387-22019
[40] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F Nature 572 215 DOI: 10.1038/s41586-019-1393-y2019
[41] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F Nature 579 56 DOI: 10.1038/s41586-020-2049-72020
[42] Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A and Kim P Nature 583 221 DOI: 10.1038/s41586-020-2458-72020
[43] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P Nature 583 215 https://www.nature.com/articles/s41586-020-2260-62020
[44] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G Nat. Phy. 16 520 DOI: 10.1038/s41567-020-0825-92020
[45] Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H and Tutuc E Phys. Rev. Lett. 123 197702 DOI: 10.1103/PhysRevLett.123.1977022019
[46] Adak P C, Sinha S, Ghorai U, Sangani L D V, Watanabe K, Taniguchi T, Sensarma R and Deshmukh M M Phy. Rev. B 101 125428 DOI: 10.1103/PhysRevB.101.1254282020
[47] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X and Yankowitz M Nat. Phys. DOI: 10.1038/s41567-020-1030-62020
[48] de Vries F K, Zhu J, Portoles E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald A H, Ensslin K, Ihn T and Rickhaus P arXiv:2002.05267 https://arxiv.org/abs/2002.052672020
[49] Rickhaus P, de Vries F, Zhu J, Portolès E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Wantanabe K, MacDonald A H, Ihn T and Ensslin K arXiv:2005.05373 https://arxiv.org/abs/2005.053732020
[50] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M Nat. Phy. https://www.nature.com/articles/s41567-020-01062-62020
[51] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F Nature https://www.nature.com/articles/s41586-020-2963-82020
[52] Shi Y, Xu S, Ezzi M M A, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal'ko V I, Adam S, Castro Neto A H and Novoselov K S arXiv:2004.12414 https://arxiv.org/abs/2004.124142020
[53] Zhu J, Su J J and MacDonald A H arXiv:2001.05084 https://arxiv.org/abs/2001.050842020
[54] Li H, Utama M I B, Wang S, Zhao W, Zhao S, Xiao X, Jiang Y, Jiang L, Taniguchi T, Watanabe K, Weber-Bargioni A, Zettl A and Wang F Nano Lett. 20 3106 DOI: 10.1021/acs.nanolett.9b050922020
[55] Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, N. Pasupathy A and R. Dean C Nat. Mat. 19 861 DOI: 10.1038/s41563-020-0708-62020
[56] Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A and Wang F Nature 579 359 DOI: 10.1038/s41586-020-2092-42020
[57] Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J and Kin Fai M Nature 579 353 DOI: 10.1038/s41586-020-2085-32020
[58] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F Nature 567 76 DOI: 10.1038/s41586-019-0976-y2019
[59] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I and Tartakovskii A I Nature 567 81 DOI: 10.1038/s41586-019-0986-92019
[60] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X Nature 567 66 DOI: 10.1038/s41586-019-0957-12019
[61] Tran K, Moody G, Wu F, et al.Nature 567 71 DOI: 10.1038/s41586-019-0975-z2019
[62] Lisi S, Lu X, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E and Hunter A Nat. Phys. DOI: 10.1038/s41567-020-01041-x2020
[63] Utama M, Koch R J, Lee K, Leconte N, Li H, Zhao S, Jiang L, Zhu J, Watanabe K, Taniguchi T, D. Ashby P, Weber-Bargioni A, ZEttl A, Jozwiak C, Jung J, Rotenberg E, Bostwick A and Wang F Nat. Phys. DOI: 10.1038/s41567-020-0974-x2020
[64] Ren Y N, Lu C, Zhang Y, Li S Y, Liu Y W, Yan C, Guo Z H, Liu C C, Yang F and He L arXiv:1912.07229 https://arxiv.org/abs/1912.072292019
[65] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y Nature 573 91 DOI: 10.1038/s41586-019-1460-42019
[66] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N Nature 572 95 DOI: 10.1038/s41586-019-1431-92019
[67] Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A Nature 572 101 DOI: 10.1038/s41586-019-1422-x2019
[68] Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A Nature 582 198 DOI: 10.1038/s41586-020-2339-02020
[69] Uri A, Grover S, Cao Y, Crosse J, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Zeldov E Nature 581 47 DOI: 10.1038/s41586-020-2255-32020
[70] Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P and Ilani S Nature 582 203 DOI: 10.1038/s41586-020-2373-y2020
[71] Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P and Ashoori R C Phys. Rev. Lett. 123 046601 DOI: 10.1103/PhysRevLett.123.0466012019
[72] Sushko A, De Greve K, Andersen T I, Scuri G, Zhou Y, Sung J, Watanabe K, Taniguchi T, Kim P, Park H and Lukin M D arXiv:1912.07446 https://arxiv.org/abs/1912.074462019
[73] McGilly L J, Kerelsky A, Finney N R, et al. Nat. Nanotechnol. 15 580 DOI: 10.1038/s41565-020-0708-32020
[74] Chen H, Zhang X L, Zhang Y Y, Wang D, Bao D L, Que Y, Xiao W, Du S, Ouyang M, Pantelides S T and Gao H J Science 365 1036 DOI: 10.1126/science.aax78642019
[75] Rui D, Sun L, Kang N, Peng H, Liu Z and Xu H 2020 Jpn. J. Appl. Phys. 59 SGGI07 DOI: 10.7567/1347-4065/ab641d
[76] Deng B, Wang B, Li N, Li R, Wang Y, Tang J, Fu Q, Tian Z, Gao P, Xue J and Hailin P ACS Nano 14 1656 DOI: 10.1021/acsnano.9b070912020
[77] Pezzini S, Miseikis V, Piccinini G, Forti S, Pace S, Engelke R, Rossella F, Watanabe K, Taniguchi T, Kim P and Coletti C Nano Lett. 20 3313 DOI: 10.1021/acs.nanolett.0c001722020
[78] Chen Y C, Lin W H, Tseng W S, Chen C C, Rossman G R, Chen C D, Wu Y S and Yeh N C Carbon 156 212 DOI: 10.1016/j.carbon.2019.09.0522020
[79] Zhao W, Huang Y, Shen C, Li C, Cai Y, Xu Y, Rong H, Gao Q, Wang Y, Zhao L, Lihong B, Qingyan W, Guangyu Z, Hongjun G, Zuyan X, Xingjiang Z and Guodong L Nano Research 12 3095 DOI: 10.1007/s12274-019-2557-72019
[80] Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J and Zhu X Y Science 367 903 DOI: 10.1126/science.aba14162020
[81] Imamura H, Visikovskiy A, Uotani R, Kajiwara T, Ando H, Iimori T, Iwata K, Miyamachi T, Nakatsuji K and Mase K arXiv:2005.01920 https://arxiv.org/abs/2005.019202020
[82] Lee P A, Nagaosa N and Wen X G Rev. Mod. Phys. 78 17 DOI: 10.1103/RevModPhys.78.172006
[83] Stewart G Rev. Mod. Phys. 83 1589 DOI: 10.1103/RevModPhys.83.15892011
[84] Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J and Zhou S Proc. Natl. Acad. Sci. USA 115 6928 DOI: 10.1073/pnas.17208651152018
[85] Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W and Ahn J R Science 361 782 DOI: 10.1126/science.aar84122018
[86] Kerelsky A, Rubio-Verd\'u C, Xian L, Kennes D M, Halbertal D, Finney N, Song L, Turkel S, Wang L, Watanabe K, Taniguchi T, Hone J, Dean C R, Basov D, Rubio A and N. Pasupathy A arXiv:1911.00007 https://arxiv.org/abs/1911.000072019
[87] Xu S G, Berdyugin A I, Kumaravadivel P, Guinea F, Kumar R K, Bandurin D A, Morozov S V, Kuang W, Tsim B, Liu S, Edgar J H, Grigorieva I V, Fal'ko V I, Kim M and Geim A K Nat. Commun. 10 4008 DOI: 10.1038/s41467-019-11971-72019
[88] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P Nat. Mat. 18 448 DOI: 10.1038/s41563-019-0346-z2019
[89] Rickhaus P, Zheng G, Lado J L, Lee Y, Kurzmann A, Eich M, Pisoni R, Tong C, Garreis R, Gold C, Masseroni M, Taniguchi T, Wantanabe K, Ihn T and Ensslin K Nano Lett. 19 8821 DOI: 10.1021/acs.nanolett.9b036602019
[90] Po H C, Zou L, Senthil T and Vishwanath A Phy. Rev. B 99 195455 DOI: 10.1103/PhysRevB.99.1954552019
[91] Park M J, Kim Y, Cho G Y and Lee S Phys. Rev. Lett. 123 216803 DOI: 10.1103/PhysRevLett.123.2168032019
[92] Ahn J, Park S and Yang B J 2019 Phy. Rev. X 9 021013 DOI: 10.1103/PhysRevX.9.021013
[93] Julku A, Peltonen T J, Liang L, Heikkila T T and Torma P Phy. Rev. B 101 060505 DOI: 10.1103/PhysRevB.101.0605052020
[94] Zarenia M, Yudishtira I, Adam S and Vignale G Phy. Rev. B 101 045421 DOI: 10.1103/PhysRevB.101.0454212020
[95] González J and Stauber T arXiv:1903.01376 https://arxiv.org/abs/1903.013762019
[96] Lian B, Liu Z, Zhang Y and Wang J Phys. Rev. Lett. 124 126402 DOI: 10.1103/PhysRevLett.124.1264022020
[1] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[2] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn 2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[3] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[4] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[5] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[6] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[7] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[8] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[9] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[10] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[11] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[12] Microstructure and ferromagnetism ofheavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[13] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[14] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[15] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
No Suggested Reading articles found!