Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017803    DOI: 10.1088/1674-1056/abaee6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical properties of several ternary nanostructures

Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路)†, Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东)
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  To investigate the optical properties of the ternary nanostructures, the nanodisk, core-shell, and three-sphere structures are constructed. The extinction coefficients and electric near-field distributions of these structures are calculated by the discrete dipole approximation (DDA) method. The result shows that the nanodisk structure has the best extinction efficiency in the three structures. Furthermore, several three-material combinations of the nanodisk structures are investigated. The ternary nanodisk structure composed of TiO2 and two noble metals (Au, Ag or Pt) has higher extinction coefficient and near-field intensity than the nanodisk consisting of Au, TiO2 and a semiconductor (PbSe, Ge, MoS2, CdSe, CdS or TiO2). Especially, TiO2/Ag/Pt has the best extinction efficiency and the max electric near-field intensity. And the extinction spectra of TiO2/Ag/Pt and TiO2/Ag/Au structures are complementary in the visible range. This work conduces to the further research into ternary nanostructure and provides essential information about its performance in visible range.
Keywords:  optical properties of nanostructures      plasmons on surfaces and interfaces      model and numerical simulation  
Revised:  05 August 2020      Published:  23 December 2020
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774248 and 11974253).
Corresponding Authors:  Corresponding author. E-mail: chengxl@scu.edu.cn   

Cite this article: 

Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东) Optical properties of several ternary nanostructures 2021 Chin. Phys. B 30 017803

1 Zhou N, Lòpez-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I and Xu Q H 2015 Rsc Adv. 5 29076
2 Qu Y Q and Duan X F 2013 Chem. Soc. Rev. 42 2568
3 Li J T and Wu N Q 2015 Catal. Sci. Technol. 5 1360
4 Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
5 Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z and Zhu J Y 2020 IEEE Access 8 85154
6 Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L and Yi Y G 2020 Sol. Energ. Mater. Sol. Cells 211 110535
7 Mohan S, Prakash R M and Do T O 2019 Catalysts 9 680
8 Fujishima A and Honda K 1972 Nature 238 37
9 Sangpour P, Hashemi F and Moshfegh A Z 2010 J. Phys. Chem. C 114 13955
10 Xiao F X 2012 J. Phys. Chem. C 116 16487
11 Subramanian V, Wolf E E and Kamat P V 2003 Langmuir 19 469
12 Fei J B and Li J B 2015 Adv. Mater. 27 314
13 Carvalho H W, Batista A P, Hammer P and Ramalho T C 2010 J. Hazard. Mater. 184 273
14 Drew K, Girishkumar G, Vinodgopal K and Kamat P V 2005 J. Phys. Chem. B 109 11851
15 Liang H Y, Li Z P, Wang W Z, Wu W Y S and Xu H X 2009 Adv. Mater. 21 4614
16 Xu H X and Käll M 2002 Phys. Rev. Lett. 89 246802
17 Tabakova T, Idakiev V, Andreeva D and Mitov I 2000 Appl. Cataly. A-Gen. 202 91
18 Tom R T, Nair A S, Singh N, Aslam M, Nagendra C, Philip R, Vijayamohanan K and Pradeep T 2003 Langmuir 19 3439
19 Xu Z C, Hou Y L and Sun S H 2014 J. Am. Chem. Soc. 129 8698
20 Fageria P, Gangopadhyay S and Pande S 2014 Rsc Adv. 4 24962
21 Tao, Gang, Xing S X, Wu T and Chen H Y 2010 Chem. Mater. 22 3826
22 Wang M and Li Z Y 2008 Sensor. Actuat. B-Chem. 133 607
23 Haugen A B, Kumakiri I, Simon C and Einarsrud M A 2011 J. Eur. Ceram. Soc. 31 291
24 Seh Z W, Liu S H, Michelle L, Zhang S Y and Liu Z L 2012 Adv. Mater. 24 2310
25 Wang H, You T T, Shi W W, Li J H and Guo L 2012 J. Phys. Chem. C 116 6490
26 Li X Z and Li F B 2001 Environ. Sci. Technol. 35 2381
27 Xiong Z W and Cao L H 2019 J. Alloys Compd. 773 828
28 Xiong Z W and Cao L H 2019 J. Alloys Compd. 785 200
29 Ma Y W, Wu Z W, Zhang L H, Liu W F and Zhang J 2015 Chin. Phys. Lett. 32 094202
30 Tada H, Mitsui T, Kiyonaga T, Akita T and Tanaka K 2006 Nat. Mater. 5 782
31 Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J and Duan H G 2019 Acta. Phys. Sin. 68 147304 (in Chinese)
32 Walther A and Mueller A 2008 Soft Matter 4 663
33 Mie G 1908 Ann. Phys.-Berlin 330 377
34 Draine B T 1988 Astrophys. J. 333 848
35 Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
36 Draine B T and Flatau P J arXiv preprint arXiv:1305.6497
37 Sosa I O, Noguez C and Barrera R G 2003 J. Phys. Chem. B 107 6269
38 Draine B T and Flatau P J 2008 J. Opt. Soc. Am. A 25 2693
39 Li Y, Zhu Y H, Wang M Y, Deng H H and Yin H H 2019 Chin. Phys. B 28 097801
40 Maier S A2007 Plasmonics: fundamentals and applications (New York: Springer) p. 122
41 Yu P Q, Yang H, Chen X F, Yi Z, Yao W T, Chen J F, Yi Y G and Wu P H 2020 Renew. Energ. 158 227
42 Zhao F, Chen X F, Yi Z, Qin F, Tang Y J, Yao W T, Zhou Z G and Yi Y G 2020 Sol. Energy 204 635
43 Li J H, Bing D, Wu Z T, Wu G Q, Bai J, Du R X and Qi Z Q 2020 Chin. Phys. B 29 017802
44 Wang M G, Cui Z X, Yang M, Lin L J, Chen X C, Wang M and Han J 2019 J. Colloid Interf. Sci. 544 1
45 Shubha J P and Jayalakshmi N 2019 Curr. Nanomater. 05 36
46 Linsebigler A L, Lu G Q and Yates J T 1995 Chem. Rev 95 735
47 Siefke T, Kroker S, Pfeiffer K, Puffky O, Dietrich K, Franta D, Ohl\'ídal I, Szeghalmi A, Kley E B and Tünnermann A 2016 Adv. Opt. Mater. 4 1780
48 Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
49 Suzuki N, Sawa Ki and Adachi S 1995 J. Appl. Phys. 77 1249
50 Aspnes D E and Studna A 1983 Phys. Rev. B 27 985
51 Beal A and Hughes H 1979 J. Phys. C: Solid State Phys. 12 881
52 Ninomiya S and Adachi S 1995 J. Appl. Phys. 78 4681
53 Treharne R, Seymour-Pierce A, Durose K, Hutchings K, Roncallo S and Lane D 2011 J. Phys.: Conf. Ser., 14-16 December 2010, University of Warwick, UK, p. 012038
54 Zhang X, Chen Y L, Liu R S and Tsai D P 2013 Rep. Prog. Phys. 76 046401
55 Henisch H K 1956 J. Electrochem. Soc. 103 637
56 Wolf H F1971 Semiconductors(New York: Wiley) pp. 251-253
57 Yi Z, Li X, Xu X B, Chen X F, Ye X, Yi Y, Duan T, Tang Y J, Liu J W and Yi Y G 2018 Nanomaterials 8 568
58 Li W L, Li B R, Meng M J, Cui Y H, Y Wu Y, Zhang Y, Dong H and Feng Y 2019 Appl. Surf. Sci. 487
59 Scarisoreanu M, Ilie A, Goncearenco E, Banici A, Morjan I, Dutu E, Tanas\va E, Fort I, Stan M, Mihailescu C and Fleaca C 2019 Appl. Surf. Sci. 509 145217
[1] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[2] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[3] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[4] Thickness-dependent excitonic properties of atomically thin 2H-MoTe2
Jin-Huan Li(李金焕), Dan Bing(邴单), Zhang-Ting Wu(吴章婷), Guo-Qing Wu(吴国庆), Jing Bai(白静), Ru-Xia Du(杜如霞), Zheng-Qing Qi(祁正青). Chin. Phys. B, 2020, 29(1): 017802.
[5] Topological properties in ABA trilayer graphene underthe irradiation of light
Liang Chen(陈亮). Chin. Phys. B, 2019, 28(11): 117304.
[6] Emerging properties of two-dimensional twisted bilayer materials
Yang Cheng(程阳), Chen Huang(黄琛), Hao Hong(洪浩), Zixun Zhao(赵子荀), Kaihui Liu(刘开辉). Chin. Phys. B, 2019, 28(10): 107304.
[7] CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser
Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松). Chin. Phys. B, 2019, 28(9): 094203.
[8] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[9] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
[10] Pulse generation of erbium-doped fiber laser based on liquid-exfoliated FePS3
Qing Yin(阴晴), Jin Wang(汪进), Xin-Yao Shi(史鑫尧), Tao Wang(王涛), Jie Yang(杨洁), Xin-Xin Zhao(赵新新), Zhen-Jiang Shen(沈振江), Jian Wu(吴坚), Kai Zhang(张凯), Pu Zhou(周朴), Zong-Fu Jiang(姜宗福). Chin. Phys. B, 2019, 28(8): 084208.
[11] Topological magnon insulator with Dzyaloshinskii-Moriya interaction under the irradiation of light
Liang Chen(陈亮). Chin. Phys. B, 2019, 28(7): 078503.
[12] Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures
Mingsong Chen(陈名松), Lulu Pan(潘璐璐), Yuanfu Lu(鲁远甫), Guangyuan Li(李光元). Chin. Phys. B, 2019, 28(7): 074208.
[13] Mode-locked fiber laser with MoSe2 saturable absorber based on evanescent field
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Xiao-Yan Zhang(张晓艳), Jin-Tian Lin(林锦添), Xia Li(李夏), Pei-Wen Kuan(关珮雯), Yan Zhou(周延), Mei-Song Liao(廖梅松), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(1): 014207.
[14] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[15] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
No Suggested Reading articles found!