Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017804    DOI: 10.1088/1674-1056/abaedb

Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays

Rui Tang(唐睿)1, Yang Xu(徐阳)2, Hong Zhang(张红)1,3,†, and Xin-Lu Cheng(程新路)2,3
1 College of Physics, Sichuan University, Chengdu 610065, China; 2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene (DVDGr) and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.
Keywords:  plasmon      double vacancy defected graphene      mixed metallic nanoarrays      multi-beam laser      harmonic spectrum  
Received:  10 July 2020      Revised:  03 August 2020      Accepted manuscript online:  13 August 2020
PACS:  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 11974253 and 11774248).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路) Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays 2021 Chin. Phys. B 30 017804

1 Maiera S A and Atwater H A 2005 J. Appl. Phys. 98 011101
2 Karalis A, Lidorikis E, Ibanescu M, Joannopoulos J D and Soljacic M 2005 Phys. Rev. Lett. 95 063901
3 Novotny L and Hulst N 2011 Nat. Photon. 5 83
4 Bell A T 2003 Science 299 1688
5 Maier S A, Kik P G and Atwater H A 2002 Appl. Phys. Lett. 81 1714
6 Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
7 Cao Y W C, Jin R and Mirkin C A 2002 Science 297 1536
8 Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
9 Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol 3 206
10 Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
11 Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405
12 Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
13 Jablan M, Buljan H and Soljacic M 2009 Phys. Rev. B 80 245435
14 Koppens F H L, Chang D E and Abajo F J G 2011 Nano Lett. 11 3370
15 Ozbay E 2006 Science 311 189
16 Boltasseva A and Atwater H A 2011 Science 331 290
17 Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sanchez-Portal D and Abajo F J G 2013 ACS Nano. 7 3635
18 Xia F, Muelle T, Lin Y, Valdes-Garcia A and Avouris P 2009 Nat. Nanotech. 4 839
19 Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano. 4 803
20 Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
21 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
22 Miyata Y, Kamon K, Ohashi K, Kitaura R, Yoshimura M and Shinohara H 2010 Appl. Phys. Lett. 96 263105
23 Liu P, Arai F and Fukuda T 2006 Appl. Phys. Lett. 89 113104
24 Ribeiro F J, Neaton J B, Louie S G and Cohen M L 2005 Phys. Rev. B 72 75302
25 Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y and Ho K M 2005 Phys. Rev. Lett. 95 205501
26 Pradhan S C and Phadikar J K 2009 Phys. Lett. A 373 1062
27 Duplock E J, Scheffler M and Lindan P J D 2004 Phys. Rev. Lett. 92 225502
28 Lusk M T and Carr L D 2008 Phys. Rev. Lett. 100 175503
29 Sanyal B, Eriksson O, Jansson U and Grennberg H 2009 Phys. Rev. B 79 113409
30 Dai X, Li Y, Zhao J and Zhao B 2011 Physica E 43 1461
31 Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408
32 Ma Y, Lehtinen P O, Foster A S and Nieminen R M 2004 New J. Phys. 6 68
33 Gass M H, Bangert U, Bleloch A L, Wang P, Nair R R and Geim A K 2008 Nat. Nanotechnol. 3 676
34 Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano. 5 26
35 Kobayashi Y, Fukui K, Enoki T and Kusakabe K 2006 Phys. Rev. B 73 125415
36 Ugeda M M, Brihuega I, Guinea F and Gomez-Rodriguez J M 2010 Phys. Rev. Lett. 104 096804
37 Yan J, Yuan Z and Gao S 2007 Phys. Rev. Lett. 98 216602
38 Yan J and Gao S 2008 Phys. Rev. B 78 235413
39 Lian K Y, Sa?ek P, Jin M and Ding D 2009 J. Chem. Phys. 130 174701
40 Guidez E B and Aikens C M 2014 Nanoscale 6 11512
41 Cao E, Guo X, Zhang L Q, Shi Y, Lin W H, Liu X C, Fang Y R, Zhou L Y, Sun Y H, Song Y Z, Liang W J and Sun M T 2017 Adv. Mater. Interfaces 4 1700869
42 Lin W H, Cao E, Zhang L Q, Xu X F, Song Y Z, Liang W J and Sun M T 2018 Nanoscale 10 5482
43 Nayyar N, Turkowski V and Rahman T S 2012 Phys. Rev. Lett. 109 157404
44 Mu X and Sun M 2020 Mater. Today Phys. 14 100222
45 Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y and Duan X 2011 Nat. Commun. 2 579
46 Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A and Gorbachev R V 2011 Nat. Commun. 2 458
47 Takatsuka Y, Takahagi K, Sano E, Ryzhii V and Otsuji T 2012 J. Appl. Phys. 112 033103
48 Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Phys. Commun. 151 60
49 Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
50 Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
51 Marinopoulos A G, Reining L, Olevano V, Rubio A, Pichler T, Liu X, Knupfer M and Fink J 2002 Phys. Rev. Lett. 89 076402
52 Niu J, Shin Y J, Lee Y, Ahn J H and Yang H 2012 Appl. Phys. Lett. 100 061116
53 Zhang K, Zhang H and Li C K 2015 Phys. Chem. Chem. Phys. 17 12051
54 Mu X J, Wang J G, Duan G Q, Li Z J, Wen J X and Sun M T 2019 Spectrochim. Acta A 212 188
[1] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[2] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[3] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[4] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[5] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[6] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[7] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[8] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[9] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[10] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[11] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[12] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[13] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[14] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[15] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
No Suggested Reading articles found!