Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 106301    DOI: 10.1088/1674-1056/abad21

Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport

Yan Li(李妍)1,†(), Yi-Nuo Liu(刘一诺)1, Xia Zhang(张霞)1
1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China

A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured through the rotation of scatters. In particular, the band inversion occurs between two pairs of high-order compound states, resulting in topological phase transition from trivial to nontrivial over a relatively broad high-frequency range. This is further evidenced by an effective Hamiltonian derived by the kp perturbation theory. The phononic topology is related to a pseudo-time-reversal symmetry constructed by the point group symmetry of two doubly degenerate eigenstates. Numerical simulations unambiguously demonstrate robust helical edge states whose pseudospin indices are locked to the propagation direction along the interface between topologically trivial and nontrivial phononic crystals. Our designed phononic systems provide potential applications in robust acoustic signal transport along any desired path over a high-frequency range.

Keywords:  topological phase transition      band inversion      compound mode      pseudospin  
Received:  02 July 2020      Revised:  30 July 2020      Published:  05 October 2020
PACS:  63.20.-e (Phonons in crystal lattices)  
  43.35.Gk (Phonons in crystal lattices, quantum acoustics)  
  43.40.+s (Structural acoustics and vibration)  
  46.40.-f (Vibrations and mechanical waves)  
Corresponding Authors:  Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
* Project supported by the Young Scientists Fund of the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016AQ09) and Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704219).

Cite this article: 

Yan Li(李妍), Yi-Nuo Liu(刘一诺), Xia Zhang(张霞) Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport 2020 Chin. Phys. B 29 106301

Fig. 1.  

Schematic view of a triangular phononic crystal consisting of snowflake-like metamolecules. Red dashed hexagon indicates the primitive cell composed by one cylindrical iron rod and six three-legged iron rods embedded in an air host. a is the lattice constant. a1 and a2 are the unit vectors. R = 0.27a denotes the distance between the centers of cylindrical rods to the centers of three-legged rods. The radii of the center cylindrical rods are r = 0.1a. The width and length of the legs are h = 0.03a and d = 0.135a, respectively. The angle θ with respect to the horizontal axis characterizes the orientation of the three-legged iron rods.

Fig. 2.  

(a) Band structure for the triangular phononic crystal with rotational angle θ = 23°. The right inset shows the primitive cell diagram. The cylindrical rod and three-legged rods are labeled as A and B, respectively. (b) Pressure field distributions of four pairs of doubly degenerate eigenstates, corresponding to the points pA, dA, pAsB, and dAsB from low frequency to high frequency in (a). Dark red and dark blue denote the positive and negative maxima, respectively.

Fig. 3.  

(a)–(c) Band structures for the triangular phononic crystals with different rotational angles: (a) θ = 15°, (b) θ = 24.85°, and (c) θ = 35°. Green and violet dotted lines represent the bands including high-order compound modes pAsB and dAsB, respectively. (d), (e) Pressure field distributions of the modes pAsB and dAsB for phononic crystals shown in (a) and (c), respectively. The color patterns show the pressure distributions, where dark red and dark blue denote the positive and negative maxima, respectively. White arrows indicate the direction and amplitude of the time-averaged intensity. Black arrows show the spinning of sound intensity around the primitive cell center. The periodic boundary conditions are applied on the boundaries of the primitive cell.

Fig. 4.  

(a) Schematic view of a ribbon-shaped supercell composed of the topologically nontrivial crystal (θ = 35°) with its two edges cladded by topologically trivial crystal (θ = 15°). (b) Projected band structure for the ribbon-shaped supercell along the Γ K direction. The black and red dotted lines denote bulk and edge states, respectively. (c), (d) Pressure field distributions confined around the interface between two domains of distinct topology at points E and F indicated in (b), respectively. The corresponding intensity is displayed in the magnified views. The color patterns show the pressure distributions, where dark red and dark blue denote the positive and negative maxima, respectively. Red arrows show the direction and amplitude of the time-averaged intensity. Black arrows show the spinning of sound intensity around the primitive cell center. The periodic boundary conditions are applied on the x and y directions of the ribbon-shaped supercell.

Fig. 5.  

(a) Schematic view of a point-like chiral source consisting of eight antennas, which has a phase difference of π/4 between the neighboring antennas. (b), (c) Pressure field distributions excited by the point-like chiral sources with clockwise and anticlockwise phase delays, respectively, in the air. (d), (e) Robustly unidirectional propagation of edge states along the Z-shaped interface between the topologically nontrivial and trivial crystals. The excitations in (d) and (e) correspond to the sources shown in (b) and (c), respectively. The white circle indicates the position of the point-like chiral source with operating frequency f ≈ 1.4027c0/a, whose phase delay direction is represented by the black arrow. The whole structure is surrounded by the perfectly matched layers to absorb outgoing waves.

Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494 DOI: 10.1103/PhysRevLett.45.494
Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801 DOI: 10.1103/PhysRevLett.95.226801
Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757 DOI: 10.1126/science.1133734
Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.3045
Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057 DOI: 10.1103/RevModPhys.83.1057
Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904 DOI: 10.1103/PhysRevLett.100.013904
Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905 DOI: 10.1103/PhysRevLett.100.013905
Liu K X, Shen L F, He S L 2012 Opt. Lett. 37 4110 DOI: 10.1364/OL.37.004110
Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782 DOI: 10.1038/ncomms6782
Chen Y, Lin Z K, Chen H Y, Jiang J H 2020 Phys. Rev. B 101 041109 DOI: 10.1103/PhysRevB.101.041109
Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901 DOI: 10.1103/PhysRevLett.114.223901
Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401 DOI: 10.1103/PhysRevLett.120.217401
Khanikaev A B, Fleury R, Mousavi S H, Alù A 2015 Nat. Commun. 6 8260 DOI: 10.1038/ncomms9260
Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301 DOI: 10.1103/PhysRevLett.114.114301
Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302 DOI: 10.1103/PhysRevLett.122.014302
Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368 DOI: 10.1038/ncomms13368
He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904 DOI: 10.1063/1.4940403
Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752 DOI: 10.1038/srep32752
He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124 DOI: 10.1038/nphys3867
Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Yu D J, Zheng S J, Liu J 2017 Phys. Rev. B 96 094106 DOI: 10.1103/PhysRevB.96.094106
Zhang Z W, Tian Y, Cheng Y, Liu X J, Christensen J 2017 Phys. Rev. B 96 241306 DOI: 10.1103/PhysRevB.96.241306
Deng Y C, Ge H, Tian Y, Lu M H, Jing Y 2017 Phys. Rev. B 96 184305 DOI: 10.1103/PhysRevB.96.184305
Xie B Y, Liu H, Cheng H, Liu Z Y, Chen S Q, Tian J G 2019 Phys. Rev. Appl. 11 044086 DOI: 10.1103/PhysRevApplied.11.044086
Xia B Z, Zheng S J, Liu T T, Jiao J R, Chen N, Dai H Q, Yu D J, Liu J 2018 Phys. Rev. B 97 155124 DOI: 10.1103/PhysRevB.97.155124
Lu J Y, Qiu C Y, Deng W Y, Huang X Q, Li F, Zhang F, Chen S Q, Liu Z Y 2018 Phys. Rev. Lett. 120 116802 DOI: 10.1103/PhysRevLett.120.116802
Zhang Z W, Tian Y, Wang Y H, Gao S X, Cheng Y, Liu X J, Christensen J 2018 Adv. Mater. 30 1803229 DOI: 10.1002/adma.201803229
Tian Z H, Shen C, Li J F, Reit E, Bachman H, Socolar J E S, Cummer S A, Huang T J 2020 Nat. Commun. 11 762 DOI: 10.1038/s41467-020-14553-0
Deng Y C, Lu M H, Jing Y 2019 J. Acoust. Soc. Am. 146 721 DOI: 10.1121/1.5115017
Nash L M, Kleckner D, Read A, Vitelli V, Turner A M, Irvine W T M 2015 Proc. Natl. Acad. Sci. USA 112 14495 DOI: 10.1073/pnas.1507413112
Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302 DOI: 10.1103/PhysRevLett.115.104302
Süsstrunk R, Huber S D 2015 Science 349 47 DOI: 10.1126/science.aab0239
Mousavi S H, Khanikaev A B, Wang Z 2015 Nat. Commun. 6 8682 DOI: 10.1038/ncomms9682
Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P, Chen Y F 2018 Nat. Commun. 9 3072 DOI: 10.1038/s41467-018-05461-5
LiuY Z, Lian C S, Li Y, Xu Y, Duan W H 2017 Phys. Rev. Lett. 119 255901 DOI: 10.1103/PhysRevLett.119.255901
Tong L, Fan H Y, Xia B Z 2020 J. Phys. D: Appl. Phys. 53 115303 DOI: 10.1088/1361-6463/ab6055
Huang H B, Tan Z H, Huo S Y, Feng L Y, Chen J J, Han X 2020 Commun. Phys. 3 46 DOI: 10.1038/s42005-020-0314-6
Li S F, Zhao D G, Niu H, Zhu X F, Zang J F 2018 Nat. Commun. 9 1370 DOI: 10.1038/s41467-018-03830-8
Kafesaki M, Economou E N 1999 Phys. Rev. B 60 11993 DOI: 10.1103/PhysRevB.60.11993
Chen Y, Xu L, Cai G X, Chen H Y 2018 Phys. Rev. B 98 125430 DOI: 10.1103/PhysRevB.98.125430
Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699 DOI: 10.1364/OE.21.007699
Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141 DOI: 10.1103/PhysRevB.86.035141
[1] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[2] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[3] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[4] The ground states and pseudospin textures of rotating two-component Bose-Einstein condensates trapped in harmonic plus quartic potential
Yan Liu(刘燕), Su-Ying Zhang(张素英). Chin. Phys. B, 2016, 25(9): 090304.
[5] Electronic properties and topological phases of ThXY (X=Pb, Au, Pt and Y= Sb, Bi, Sn) compounds
Zahra Nourbakhsh, Aminollah Vaez. Chin. Phys. B, 2016, 25(3): 037101.
[6] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
[7] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui, Zhang Cun-Xi, Ji Qing-Shan. Chin. Phys. B, 2015, 24(3): 030305.
[8] Current-induced pseudospin polarization in silicene
Wang Lei, Zhu Guo-Bao. Chin. Phys. B, 2014, 23(9): 098503.
[9] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[10] Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials
A. Suparmi, C. Cari, U. A. Deta. Chin. Phys. B, 2014, 23(9): 090304.
[11] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[12] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[13] Properties of pseudospin polarization on a graphene-based spin singlet superconducting junction
Jia Shuan-Wen, Wang Jun-Tao, Yang Yan-Ling, Bai Chun-Xu. Chin. Phys. B, 2013, 22(8): 087408.
[14] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[15] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[2] Huang Guo-Xiang. Second harmonic generation of propagating collective excitations in Bose-Einstein condensates[J]. Chin. Phys., 2004, 13(11): 1866 -1876 .
[3] Zheng Shi-Wang, Tang Yi-Fa, Fu Jing-Li. Non-Noether symmetries and Lutzky conservative quantities of nonholonomic nonconservative dynamical systems[J]. Chin. Phys., 2006, 15(2): 243 -248 .
[4] Wang Hong, Zhang Yong, Dou Shuo-Xing, Wang Peng-Ye. Monte Carlo simulation on backward steps of single kinesin molecule[J]. Chin. Phys. B, 2008, 17(4): 1513 -1517 .
[5] Peng Xian-De, Zhu Tao, Wang Fang-Wei, Huang Wan-Guo, Cheng Zhao-Hua. The electrical transport behavior of Zn-treated Zn1-xMnxO bulks[J]. Chin. Phys. B, 2009, 18(6): 2576 -2581 .
[6] Wang Chuan, Zhang Yong. Quantum secret sharing protocol using modulated doubly entangled photons[J]. Chin. Phys. B, 2009, 18(8): 3238 -3242 .
[7] Wei Gao-Feng, Chen Wen-Li, Wang Hong-Ying, Li Yuan-Yuan. The scattering states of the generalized Hulthén potential with an improved new approximate scheme to the centrifugal term[J]. Chin. Phys. B, 2009, 18(9): 3663 -3669 .
[8] You Rong-Yi, Huang Xiao-Jing. Local electric field and configuration of CO molecules adsorbed on a nanostructured surface with nanocones[J]. Chin. Phys. B, 2009, 18(9): 3970 -3974 .
[9] Wang Qiao, Wu Shi-Fa, Li Xu-Feng, Wang Xiao-Gang. Optimizing bowtie structure parameters for specific incident light[J]. Chin. Phys. B, 2010, 19(11): 117304 -117305 .
[10] Dai You-Yong, Yan Shi-Shen, Tian Yu-Feng, Chen Yan-Xue, Liu Guo-Lei, Mei Liang-Mo. Universal spin-dependent variable range hopping in wide-band-gap oxide ferromagnetic semiconductors[J]. Chin. Phys. B, 2010, 19(3): 37203 -037203 .