Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104101    DOI: 10.1088/1674-1056/abab79
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial

Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†
1 School of Sciences, Zhejiang University of Science and Technology, Hangzhou 310023, China
Abstract  

We propose a metal/dielectric tri-layer metamaterial for wavefront shaping. By arranging the element in an array with a constant phase gradient and irradiated it with a plane wave, focused and focused vortex beams can be obtained. The designed metamaterial features the excellent capability of focused/focused vortex beams generation within the operating frequency range of 30 GHz–34 GHz. The simulation results are consistent with the theoretical analyses.

Keywords:  metamaterial      phase shift      wave-front shaping      orbital angular momentum  
Received:  10 May 2020      Revised:  08 June 2020      Accepted manuscript online:  01 August 2020
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  92.60.Ta (Electromagnetic wave propagation)  
Corresponding Authors:  Corresponding author. E-mail: xubijun@zust.edu.cn   
About author: 
†Corresponding author. E-mail: xubijun@zust.edu.cn
* Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20F050001).

Cite this article: 

Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)† Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial 2020 Chin. Phys. B 29 104101

Fig. 1.  

(a) Scheme of the unit used in the design, (b) top view of the unit.

a/mm Transmission phase/(°) Theoretical transmission phase/(°) Amplitude
1.4 –156.0 –157 0.73
1.347 –110.0 –112 0.75
1.121 –66.2 –67 0.79
0.997 –21.5 –22 0.82
0.924 22 23 0.86
0.868 68.3 68 0.88
0.794 112 113 0.92
0.732 156 158 0.93
Table 1.  

The radius a corresponding to the phase and transmission amplitude of our designed model.

Fig. 2.  

The radius a corresponding to the phase shift and transmission amplitude at 32 GHz.

Fig. 3.  

Panels (a) and (b) are the planes of focused and focused vortex metamaterial, panels (c) and (d) are the three-dimensional (3D) view of metamaterial arrays.

Fig. 4.  

(a)–(c) Focused electric field distribution of the yz plane at 30, 32, and 34 GHz. (d)–(f) Focused electric field distribution of the xy plane at 30, 32, and 34 GHz. (g)–(i) Focused far-field pattern of the metamaterial at 30 GHz, 32 GHz, and 34 GHz.

Fig. 5.  

(a)–(c) Simulation gains at 30 GHz, 32 GHz, and 34 GHz.

Fig. 6.  

(a) Incident initial phase; (b) spiral phase; (c) total phase; (d)–(f) Focused vortex electric field distribution at 30, 32 and 34 GHz; (g)–(i) Simulation results of focused vortex phase at 30 GHz, 32 GHz, and 34 GHz.

[1]
Xiao H D, Sun H Y, Gu C Q, Li Z, Chen X L, Xu B J 2019 Prog. Electron. Res. 80 111 DOI: 10.2528/PIERM19010504
[2]
Fan B, Ba Z L, Xiong W 2018 Opt. Express 26 25693 DOI: 10.1364/OE.26.025693
[3]
Zhang Y, Yang L, Wang H, Zhang X, Jin X 2018 IEEE Antenn. Propag. Lett. 17 172 DOI: 10.1109/LAWP.2017.2779269
[4]
Xu H X, Liu H, Ling X, Sun Y, Yuan F 2017 IEEE T. Antenn. Propag. 65 7378 DOI: 10.1109/TAP.2017.2761548
[5]
Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903 DOI: 10.1063/1.4944789
[6]
Fei D, Chen Y T, Bozhevolnyi S I 2020 Nanophotonics 9 371 DOI: 10.1515/nanoph-2019-0235
[7]
Mehmood M Q, Mei S T, Hussain S, Huang K, Siew S Y, Zhang L, Zhang T H, Ling X H, Liu H, Teng J H, Danner A, Zhang S, Qiu C W 2016 Adv. Mater. 28 2533 DOI: 10.1002/adma.201504532
[8]
Li T J, Liang J G, Li H P, Liu Y Q 2016 Chin. Phys. B 25 094101 DOI: 10.1088/1674-1056/25/9/094101
[9]
Hou H S, Wang G M, Li H P, Guo W L, Li T J, Cai T 2017 Chin. Phys. B 26 057701 DOI: 10.1088/1674-1056/26/5/057701
[10]
Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 10739 DOI: 10.1364/OE.21.010739
[11]
Zhang D, Cao X Y, Yang H H, Gao J, Lv S Q 2019 Chin. Phys. B 28 034204 DOI: 10.1088/1674-1056/28/3/034204
[12]
Pendry J B, Schurig D, Smith D R 2006 Science 312 1780 DOI: 10.1126/science.1125907
[13]
Zhao Y, Belkin M A, Alù A 2012 Nat. Commun. 3 870 DOI: 10.1038/ncomms1877
[14]
Wei Z Y, Cao Y, Fan Y C, Yu X, Li H Q 2011 Opt. Express 19 21425 DOI: 10.1364/OE.19.021425
[15]
Odit M, Kapitanova P, Belov P, Alaee R, Rockstuhl C, Kivshar Y S 2016 Appl. Phys. Lett. 108 221903 DOI: 10.1063/1.4953023
[16]
Lin B Q, Guo J X, Huang B G, Fang L B, Chu P, Liu X W 2018 Chin. Phys. B 27 054204 DOI: 10.1088/1674-1056/27/5/054204
[17]
Zheng W, Zheng S, Hui X, Chen Y, Jin X, Chi H, Zhang X 2017 IEEE Antenn. Propag. Lett. 16 194 DOI: 10.1109/LAWP.2016.2569540
[18]
Jiang Z H, Kang L, Hong W, Werner D H 2018 Phys. Rev. Appl. 9 064009 DOI: 10.1103/PhysRevApplied.9.064009
[19]
Guo Z, Yang G 2017 IEEE Antenn. Propag. Lett. 16 404 DOI: 10.1109/LAWP.2016.2581204
[20]
Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901 DOI: 10.1063/1.4953786
[21]
Cvijetic N, Milione G, Ip E, Wang T 2015 Sci. Rep. 5 15422 DOI: 10.1038/srep15422
[22]
Zhao M M, Fu S F, Zhou S, Song Y L, Zhang Q, Yin Y Q, Zhao Y T, Liang H, Wang X Z 2020 Chin. Phys. B 29 054210 DOI: 10.1088/1674-1056/ab81fa
[23]
Liu K, Cheng Y, Yang Z, Wang H, Qin Y, Li X 2015 IEEE Antenn. Propag. Lett. 14 711 DOI: 10.1109/LAWP.7727
[24]
Xu H, Liu H, Ling X, Sun Y, Yuan F 2017 IEEE Trans. Antenn. Propag. 65 7378 DOI: 10.1109/TAP.2017.2761548
[25]
Wang J, Yang J, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photon. 6 488 DOI: 10.1038/nphoton.2012.138
[26]
Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876 DOI: 10.1038/ncomms5876
[27]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333 DOI: 10.1126/science.1210713
[28]
Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Li S 2016 Sci. Rep. 6 35692 DOI: 10.1038/srep35692
[29]
Xu B J, Wu C, Wei Z Y, Fan Y C, Li H Q 2017 Opt. Mater. Express 4 1141 DOI: 10.1364/OME.7.001141
[30]
Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396 DOI: 10.1126/sciadv.1500396
[31]
Xu B J, Wu C, Wei Z Y, Fan Y C, Li H Q 2016 Opt. Mater. Express 6 3940 DOI: 10.1364/OME.6.003940
[32]
Qi M Q, Tang W X, Cui T J 2015 Sci. Rep. 5 11732 DOI: 10.1038/srep11732
[33]
Holloway C L, Kuester E F, Gordon J A, O’Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. Mag. 54 10 DOI: 10.1109/MAP.2012.6230714
[34]
Xiao S S 2017 Research of electromagnetic beam controlling surface at KA frequency Master’s Dissertation Harbin Harbin Institute of Technology in Chinese
[35]
Yan M Y, Sun Z C, Wu B R, Cheng P, Xu B J 2020 Frontiers in Physics 8 46 DOI: 10.3389/fphy.2020.00046
[36]
Sun Z C, Yan M Y, Mupona T E, Xu B J 2019 Frontiers in Physics 7 181 DOI: 10.3389/fphy.2019.00181
[1] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[5] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[6] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[7] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[8] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[9] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[10] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[11] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[12] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[13] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[14] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[15] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
No Suggested Reading articles found!