Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097702    DOI: 10.1088/1674-1056/abab73
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film

Bo Chen(陈波)1, Zi-Run Li(李滋润)1, Chuan-Fu Huang(黄传甫)2, Yong-Mei Zhang(张永梅)1
1 Department of Physics, School of Science, North University of China, Taiyuan 030051, China;
2 School of Physics, China University of Mining and Technology, Xuzhou 221116, China
Abstract  By dispersing La1-xSrxMnO3 (LSMO) granule into PbZrxTi1-xO3 (PZT) matrix, the 0-3 type LSMO/PZT composite film is synthesized through chemical solution method. The asymmetry of the top and bottom electrodes introduces novel electrostatic screening on LSMO/PZT interface. As electric polarization is switched between upward and downward orientations, the evolution of exchange bias, diode transport, and magnetoresistance is observed. The result implies the electrostatic switch of magnetic core-shell in the present film. In detail, as the spontaneous polarization is upward or downward in the PZT matrix, the ferromagnetic/antiferromagnetic or ferromagnetic/ferromagnetic core-shell structure is formed in LSMO granule, respectively. This work would develop a novel device for spintronics and metamaterial.
Keywords:  electric polarization      magnetic core-shell      exchange bias      conductance  
Received:  07 April 2020      Revised:  15 July 2020      Published:  05 September 2020
PACS:  77.22.Ej (Polarization and depolarization)  
  75.75.Fk (Domain structures in nanoparticles)  
  75.30.Et (Exchange and superexchange interactions)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
Fund: Project supported by the Science Foundation of North University of China (Grant No. 2017026), the Applied Basic Research Foundation of Shanxi Province, China (Grant No. 201801D221143), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0535), and the National Natural Science Foundation of China (Grant No. 11847012).
Corresponding Authors:  Bo Chen     E-mail:  BoChen@nuc.edu.cn

Cite this article: 

Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅) Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film 2020 Chin. Phys. B 29 097702

[1] Noguesa J, Sorta J, Langlaisb V, Skumryeva V, Surinachb S, Munozb J S and Barob M D 2005 Phys. Rep. 422 65
[2] Manna P K and Yusuf S M 2014 Phys. Rep. 535 61
[3] Markovich V, Puzniak R, Fita I, Mogilyansky D, Wisniewski A, Gorodetsky G and Jung G 2014 J. Phys. Chem. C 118 7721
[4] Huang Z G, Chen Z G, Peng K, Wang D H, Zhang F M, Zhang W Y and Du Y W 2004 Phys. Rev. B 69 094420
[5] Jirak Z, Hirschner J, Kaman O, Knizek K, Levinsky P, Marysko M and Hejtmanek J. 2017 J. Phys. D: Appl. Phys. 50 075001
[6] Khurshid H, Phan M H, Mukherjee P and Srikanth H 2014 Appl. Phys. Lett. 104 072407
[7] Ge C N, Wan X G, Eric P, Hu Z W, Wen I L, Michael B, Zou W Q and Du Y W 2015 Chin. Phys. B 24 034501
[8] Nieves P, Kechrakos D and Fesenko O C 2016 Phys. Rev. B 93 064432
[9] Feng J N, Liu W, Geng D Y, Ma S, Yu T, Zhao X T, Dai Z M, Zhao X G and Zhang Z D 2014 Chin. Phys. B 23 087503
[10] Hyun B R, Marus M, Zhong H Y, Li D P, Liu H C, Xie Y, Koh W K, Xu B, Liu Y J and Sun X W 2020 Chin. Phys. B 29 018503
[11] Chen B, Pan D F, Duan M L and An P L 2019 Phys. Rev. B 100 134418
[12] Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
[13] Vaz C A F, Segal Y, Hoffman J, Grober R D, Walker F J and Ahn C H 2010 Appl. Phys. Lett. 97 042506
[14] Dong S, Zhang X T, Yu R, Liu J M and Dagotto E 2011 Phys. Rev. B 84 155117
[15] Leufke P M, Kruk R, Brand R A and Hahn H 2013 Phys. Rev. B 87 094416
[16] Hong X, Posadas A and Ahn C H 2005 Appl. Phys. Lett. 86 142501
[17] Glazkova E, McCash K, Chang C M, Mani B K and Ponomareva I 2014 Appl. Phys. Lett. 104 012909
[18] Kukhar V G, Pertsev N A, Kohlstedt H and Waser R 2006 Phys. Rev. B 73 214103
[19] Pan D F, Bi G F, Chen G Y, Zhang H, Liu J M Wang G H and Wan J G 2016 Sci. Rep. 6 22948
[20] Gao X S, Rodriguez B J, Liu L F, Birajdar B, Pantel D, Ziese M, Alexe M and Hesse D 2010 ACS Nano 4 1099
[21] Rajagopal R, Mona J, Kale S N, Bala T, Pasricha R, Poddar P, Sastry M, Prasad B L V, Kundaliya D C and Ogale S B 2006 Appl. Phys. Lett. 89 023107
[22] Ma Z J, Chen G, Zhou P, Mei Z H and Zhang T J 2017 J. Phys. D: Appl. Phys. 50 015303
[23] Xian S L, Nie L X, Qin J, Kang T T, Li C Y, Xie J L, Deng L J and Bi L 2019 Opt. Express 27 28618
[24] Chen B, Su N N, Cui W L and Yan S N 2018 Phys. Lett. A 382 1124
[25] Rostamnejadi A, Venkatesan M, Salamati H, Ackland K, Gholizadeh H, Kameli P and Coey J M D 2017 J. Appl. Phys. 121 173902
[26] Nayek C, Samanta S, Manna K, Pokle A, Nanda B R K, Anilkumar P S and Murugavel P 2016 Phys. Rev. B 93 094401
[27] Yang H, Cao Z E, Shen X, Xian T, Feng W J, Jiang J L, Feng Y C, Wei Z Q and Dai J F 2009 J. Appl. Phys. 106 104317
[28] Singh Y, Oubouchou H, Nishino M, Miyashita S and Boukheddaden K 2020 Phys. Rev. B 101 054105
[29] Wang Z P, Wang Y, Yu J B, Yang J Q, Zhou Y, Mao J Y, Wang R P, Zhao X J, Zheng W H and Han S T 2020 Nano Lett. 20 5562
[1] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[2] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[3] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
[4] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[5] Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer
Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(10): 107301.
[6] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[7] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[8] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[9] General theories and features of interfacial thermal transport
Hangbo Zhou(周杭波), Gang Zhang(张刚). Chin. Phys. B, 2018, 27(3): 034401.
[10] Thermal properties of transition-metal dichalcogenide
Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟). Chin. Phys. B, 2018, 27(3): 034402.
[11] Gas-sensor property of single-molecule device: F2 adsorbing effect
Zong-Liang Li(李宗良), Jun-Jie Bi(毕俊杰), Ran Liu(刘然), Xiao-Hua Yi(衣晓华), Huan-Yan Fu(傅焕俨), Feng Sun(孙峰), Ming-Zhi Wei(魏明志), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(9): 098508.
[12] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[13] Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field
Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2017, 26(7): 077201.
[14] Enhancement of subgap conductance in a graphene superconductor junction by valley polarization
Chuan-Xin Li(李传新), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2017, 26(2): 027304.
[15] Novel conductance step in carbon nanotube with wing-like zigzag graphene nanoribbons
Hong Liu(刘红). Chin. Phys. B, 2017, 26(11): 116101.
No Suggested Reading articles found!