Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110306    DOI: 10.1088/1674-1056/aba9ca
RAPID COMMUNICATION Prev   Next  

Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature

Xue-Jing Feng(冯雪景) and Lan Yin(尹澜)
School of Physics, Peking University, Beijing 100871, China
Abstract  

We study the ferromagnetic transition of a two-component homogeneous dipolar Fermi gas with 1D spin–orbit coupling (SOC) at finite temperature. The ferromagnetic transition temperature is obtained as functions of dipolar constant λd, spin–orbit coupling constant λSOC and contact interaction constant λs. It increases monotonically with these three parameters. In the ferromagnetic phase, the Fermi surfaces of different components can be deformed differently. The phase diagrams at finite temperature are obtained.

Keywords:  dipolar Fermi gas      stoner model      spin-orbit coupling  
Received:  15 May 2020      Revised:  29 June 2020      Published:  03 November 2020
Fund: the National Key Research and Development Project of China (Grant No. 2016YFA0301501).
Corresponding Authors:  Corresponding author. E-mail: yinlan@pku.edu.cn   

Cite this article: 

Xue-Jing Feng(冯雪景) and Lan Yin(尹澜) Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature 2020 Chin. Phys. B 29 110306

Fig. 1.  

Magnetization M as functions of λd, λT, λSOC, and λs. (a) M increases with λd for λSOC = 0.7, λT = 0.1 and λs = 0; (b) M decreases with λT for λSOC = 1, λd = 0.26 and λs = 0; (c) M increases with λSOC for λd = 0.25, λT = 0.1 and λs = 0; (d) M increases with λs for λSOC, λd = 0.02 and λT = 0.1.

Fig. 2.  

Ferromagnetic transition temperature as functions of λs, λd, λSOC. In (a), the solid line is the ferromagnetic transition temperature as a function of λs with λSOC = 0.6 and λd = 0.02 and the red dashed line is the result of the Stoner model. In (b), the solid line is the temperature for λSOC = 1 and λs = 0. The dashed line is the temperature for λSOC = 0.8 and λs = 0. The dotted line is the temperature for λSOC = 1.0 and λs = 0.2. In (c), the solid line is the temperature for λd = 0.27 and λs = 0. The dashed line is the temperature for λd = 0.22 and λs = 0. The dotted line is the temperature for λd = 0.27 and λs = 0.4. In the inset, these lines are saturated to different values at large λSOC.

Fig. 3.  

Phase diagram at λT = 0.1. The horizontal axis represents SOC constant λSOC and the vertical axis represents DDI constant λd. The solid and dotted lines are ferromagnetic transition lines. The solid line is for λs = 0 while the dotted line is for λs = 1.

Fig. 4.  

Parameters α1 and α2 as a function of λT with λSOC = 1.0, λd = 0.26 and λs = 0. As λT increases, α1 and α2 meet at the ferromagnetic transition temperature and then slowly approach to 1 from below, which indicates that the two Fermi surfaces are deformed differently in the ferromagnetic phase. The red solid line stands for the ideal Fermi surface.

[1]
Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198 DOI: 10.1126/science.269.5221.198
[2]
Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969 DOI: 10.1103/PhysRevLett.75.3969
[3]
Ni K K, Ospelkaus S, de Miranda M H G, Pe’Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231 DOI: 10.1126/science.1163861
[4]
Bo Y, Moses S A, Bryce G, Covey J P, Hazzard K R A, Ana Maria R, Jin D S, Jun Y 2013 Nature 501 521 DOI: 10.1038/nature12483
[5]
Chotia A, Neyenhuis B, Moses S A, Yan B, Covey J P, Foss-Feig M, Rey A M, Jin D S, Ye J 2012 Phys. Rev. Lett. 108 080405 DOI: 10.1103/PhysRevLett.108.080405
[6]
Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, de Miranda M H G, Bohn J L, Ye J, Jin D S 2010 Nature 464 1324 DOI: 10.1038/nature08953
[7]
Wu C H, Park J W, Ahmadi P, Will S, Zwierlein M W 2012 Phys. Rev. Lett. 109 085301 DOI: 10.1103/PhysRevLett.109.085301
[8]
Lu M, Burdick N Q, Lev B L 2012 Phys. Rev. Lett. 108 215301 DOI: 10.1103/PhysRevLett.108.215301
[9]
You L, Marinescu M 1999 Phys. Rev. A 60 2324 DOI: 10.1103/PhysRevA.60.2324
[10]
Cooper N R, Shlyapnikov G V 2009 Phys. Rev. Lett. 103 155302 DOI: 10.1103/PhysRevLett.103.155302
[11]
Levinsen J, Cooper N R, Shlyapnikov G V 2011 Phys. Rev. A 84 013603 DOI: 10.1103/PhysRevA.84.013603
[12]
Wu C, Hirsch J E 2010 Phys. Rev. B 81 020508 DOI: 10.1103/PhysRevB.81.020508
[13]
Pikovski A, Klawunn M, Shlyapnikov G V, Santos L 2010 Phys. Rev. Lett. 105 215302 DOI: 10.1103/PhysRevLett.105.215302
[14]
Gadsbølle A L, Bruun G M 2012 Phys. Rev. A 86 033623 DOI: 10.1103/PhysRevA.86.033623
[15]
Liu B, Yin L 2012 Phys. Rev. A 86 031603 DOI: 10.1103/PhysRevA.86.031603
[16]
Liu B, Yin L 2011 Phys. Rev. A 84 043630 DOI: 10.1103/PhysRevA.84.043630
[17]
Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D, Rey A M 2011 Phys. Rev. Lett. 107 115301 DOI: 10.1103/PhysRevLett.107.115301
[18]
Liao R, Brand J 2010 Phys. Rev. A 82 063624 DOI: 10.1103/PhysRevA.82.063624
[19]
Balibar S 2010 Nature 464 176 DOI: 10.1038/nature08913
[20]
Zeng T S, Yin L 2014 Phys. Rev. B 89 174511 DOI: 10.1103/PhysRevB.89.174511
[21]
Zhang Y C, Maucher F, Pohl T 2019 Phys. Rev. Lett. 123 015301 DOI: 10.1103/PhysRevLett.123.015301
[22]
Bhongale S G, Mathey L, Tsai S W, Clark C W, Zhao E 2012 Phys. Rev. Lett. 108 145301 DOI: 10.1103/PhysRevLett.108.145301
[23]
Yamaguchi Y, Sogo T, Ito T, Miyakawa T 2010 Phys. Rev. A 82 013643 DOI: 10.1103/PhysRevA.82.013643
[24]
Burdick N Q, Tang Y, Lev B L 2016 Phys. Rev. X 6 031022 DOI: 10.1103/PhysRevX.6.031022
[25]
Jo G B, Lee Y R, Choi J H, Christensen C A, Kim T H, Thywissen J H, Pritchard D E, Ketterle W 2009 Science 325 1521 DOI: 10.1126/science.1177112
[26]
Valtolina G, Scazza F, Amico A, Burchianti A, Recati A, Enss T, Inguscio M, Zaccanti M, Roati G 2017 Nat. Phys. 13 704 DOI: 10.1038/nphys4108
[27]
Stoner E C 1938 Proc. R. Soc. London. Ser. A 165 372 DOI: 10.1098/rspa.1938.0066
[28]
Stoner E C 1933 London Edinburgh Dublin Philos. Mag. J. Sci. 15 1018 DOI: 10.1080/14786443309462241
[29]
Duine R A, MacDonald A H 2005 Phys. Rev. Lett. 95 230403 DOI: 10.1103/PhysRevLett.95.230403
[30]
Ryszkiewicz J, Brewczyk M, Karpiuk T 2020 Phys. Rev. A 101 013618 DOI: 10.1103/PhysRevA.101.013618
[31]
He L, Liu X J, Huang X G, Hu H 2016 Phys. Rev. A 93 063629 DOI: 10.1103/PhysRevA.93.063629
[32]
Zhai H 2009 Phys. Rev. A 80 051605 DOI: 10.1103/PhysRevA.80.051605
[33]
Pilati S, Bertaina G, Giorgini S, Troyer M 2010 Phys. Rev. Lett. 105 030405 DOI: 10.1103/PhysRevLett.105.030405
[34]
Deng T S, Lu Z C, Shi Y R, Chen J G, Zhang W, Yi W 2018 Phys. Rev. A 97 013635 DOI: 10.1103/PhysRevA.97.013635
[35]
Massignan P, Bruun G M 2011 Eur. Phys. J. D 65 83 DOI: 10.1140/epjd/e2011-20084-5
[36]
Fregoso B M, Fradkin E 2009 Phys. Rev. Lett. 103 205301 DOI: 10.1103/PhysRevLett.103.205301
[37]
Feng X J, Yin L 2020 Chin. Phys. Lett. 37 020301 DOI: 10.1088/0256-307X/37/2/020301
[38]
Miyakawa T, Sogo T, Pu H 2008 Phys. Rev. A 77 061603 DOI: 10.1103/PhysRevA.77.061603
[39]
Ronen S, Bohn J L 2010 Phys. Rev. A 81 033601 DOI: 10.1103/PhysRevA.81.033601
[1] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[2] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[3] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[6] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[7] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[8] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[9] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[10] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[11] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[12] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[13] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[14] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[15] Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride
Dong-lan Wu(伍冬兰), Cheng-quan Lin(林成泉), Yu-feng Wen(温玉锋), An-dong Xie(谢安东), Bing Yan(闫冰). Chin. Phys. B, 2018, 27(8): 083101.
No Suggested Reading articles found!