Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 106201    DOI: 10.1088/1674-1056/aba9bd

Synthesis of black phosphorus structured polymeric nitrogen

Ying Liu(刘影)1,†, Haipeng Su(苏海鹏)1, Caoping Niu(牛草萍)2,3,, Xianlong Wang(王贤龙)2,3, Junran Zhang(张俊然)4, Zhongxue Ge(葛忠学)1, and Yanchun Li(李延春)4
1 Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
2 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
3 University of Science and Technology of China, Hefei 230026, China
4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Since the discoveries of polymeric nitrogen, named cg-N (2004), LP-N (2014), HLP-N (2019), another polymorph named black phosphorus nitrogen (BP-N) was synthesized at high-pressure-high-temperature conditions. The narrow existing pressure region and similar synthesized pressure of BP-N compared with cg-N indicate that the stable energy and enthalpy of formation of these two structures are close to each other, which was confirmed by our theoretical calculation. In order to obtain the pressure region of BP-N phase, pure N2 and TiN/Pb + N2 precursors were used for laser-heating high pressure experiments in diamond anvil cell (DAC), and the phase identity was examined by Raman and XRD mapping. BP-N can be synthesized in the pressure range of 130 GPa to 140 GPa with the assistance of heating absorber. With the decrease of the pressure, BP-N can be quenched to ∼ 40 GPa. The synthesizing pressure–temperature and the stable pressure region of BP-N are important for further exploration of BP-N and its kinetic and thermal dynamic relationship with other polymeric nitrogen, especially cg-N.

Keywords:  high pressure and high temperature      energetic materials      polymeric nitrogen      diamond anvil cell  
Received:  23 June 2020      Revised:  16 July 2020      Published:  05 October 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.05.cp (X-ray diffraction)  
  42.62.-b (Laser applications)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Corresponding Authors:  Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
* Project supported by the National Natural Science Foundation of China (Grant No. 11904281).

Cite this article: 

Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春) Synthesis of black phosphorus structured polymeric nitrogen 2020 Chin. Phys. B 29 106201

Fig. 1.  

(a) Raman spectra of nitrogen heated at 143 GPa from run I (black) compared with the experimental spectra for BP-structured polymeric nitrogen (red bars) at 138 GPa, 2200 K.[16] Inset shows the microscopic images of the sample under illumination with both reflected and transmitted light before and after laser heating. (b) Crystal structure of BP-N under 140 GPa.

Fig. 2.  

Raman spectra of nitrogen before and after heating at 130 GPa using TiN and Pb as laser absorber, respectively.

# Pressure/GPa Temperature/K Absorber Results
I ∼ 143 ∼ 2500 BP-N
II ∼ 130 ∼ 1800 cg-N
III ∼ 130 ∼ 2500 TiN BP-N
IV ∼ 130 ∼ 2500 Pb BP-N
V ∼ 120 ∼ 2500 TiN
Table 1.  

Experimental details of the five experimental runs, including the experimental conditions and major results.

Fig. 3.  

(a) Raman spectra of BP-N during the decompression. (b) Measured pressure dependence of Raman shift (run III) of BP-N and (run II) of CG-N compared with calculations and previously reported values[10,13,15,16] of polymeric nitrogen. All measurements were performed during decompression.

Fig. 4.  

(a) The equation of state, (b) formation enthalpy, and (c) energy density of CH-N, BP-N, and cg-N. The values of CH-N, BP-N, and cg-N phases are shown in red triangle, red circle, and blue square, respectively. The red vertical dotted line indicates the pressure (20 GPa), where CH-N becomes stable.

Uddin J, Barone V, Scuseria G E 2006 Mol. Phys. 104 745 DOI: 10.1080/00268970500417325
Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419 DOI: 10.1103/PhysRevB.46.14419
Alemany M M G, Martins J L 2003 Phys. Rev. B 68 024110 DOI: 10.1103/PhysRevB.68.024110
Ma Y M, Oganov A R, Li Z, Xie Y, Kotakoski J 2009 Phys. Rev. Lett. 102 065501 DOI: 10.1103/PhysRevLett.102.065501
Mattson W D, Sanchez-Portal D, Chiesa S, Martin R M 2004 Phys. Rev. Lett. 93 125501 DOI: 10.1103/PhysRevLett.93.125501
Zahariev F, Hooper J, Alavi S, Zhang F, Woo T K 2007 Phys. Rev. B 75 140101 DOI: 10.1103/PhysRevB.75.140101
Zahariev F, Hu A, Hooper J, Zhang F, Woo T K 2005 Phys. Rev. B 72 214108 DOI: 10.1103/PhysRevB.72.214108
Yao Y, Tse J S, Tanaka K 2008 Phys. Rev. B 77 052103 DOI: 10.1103/PhysRevB.77.052103
Wang X l, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Chen L, Pickard C J, Ma Y M 2012 Phys. Rev. Lett. 109 175502 DOI: 10.1103/PhysRevLett.109.175502
Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558 DOI: 10.1038/nmat1146
Lipp M J, Klepeis J P, Baer B J, Cynn H, Evans W J, Iota V, Yoo C S 2007 Phys. Rev. B 76 014113 DOI: 10.1103/PhysRevB.76.014113
Lei L, Tang Q Q, Zhang F, Liu S, Wu B B, Zhou C Y 2020 Chin. Phys. Lett. 37 068101 DOI: 10.1088/0256-307X/37/6/068101
Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502 DOI: 10.1103/PhysRevLett.113.205502
Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P 2019 Phys. Rev. Lett. 122 066001 DOI: 10.1103/PhysRevLett.122.066001
Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001 DOI: 10.1103/PhysRevLett.124.216001
Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K 2020 Sci. Adv. 6 eaba9206 DOI: 10.1126/sciadv.aba9206
Zou G T, Ma Y Z, Mao H K, Hemley R J, Gramsch S A 2001 Rev. Sci. Instrum. 72 1298 DOI: 10.1063/1.1343864
Dewaele A, Mezouar M, Guignot N, Loubeyre P 2010 Phys. Rev. Lett. 104 255701 DOI: 10.1103/PhysRevLett.104.255701
Hirai S, Kojima Y, Ohfuji H, Nishiyama N, Irifune T, Klemme S, Bromiley G, Attfield J P 2011 Phys. Chem. Miner. 38 631 DOI: 10.1007/s00269-011-0435-2
Akahama Y, Kawamura H 2010 J. Phys.: Conf Ser. 215 012195 DOI: 10.1088/1742-6596/215/1/012195
Shen G, Mao H K 2017 Rep. Prog. Phys. 80 016101 DOI: 10.1088/1361-6633/80/1/016101
Prescher C, Prakapenka V B 2015 High Press. Res. 35 223 DOI: 10.1080/08957959.2015.1059835
Kresse G, Hafner J 1993 Phys. Rev. B 48 13115 DOI: 10.1103/PhysRevB.48.13115
Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169 DOI: 10.1103/PhysRevB.54.11169
Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.3865
Blöchl P E 1994 Phys. Rev. B 50 17953 DOI: 10.1103/PhysRevB.50.17953
Joubert D 1999 Phys. Rev. B 59 1758 DOI: 10.1103/PhysRevB.59.1758
Qian G R, Niu H Y, Hu C H, Oganov A R, Zeng Q F, Zhou H Y 2016 Sci. Rep. 6 25947 DOI: 10.1038/srep25947
Yu S Y, Huang B W, Zeng Q F, Oganov A R, Zhang L T, Frapper G 2017 J. Phys. Chem. C 121 11037 DOI: 10.1021/acs.jpcc.7b00474
Laniel D, Winkler B, Koemets E, Fedotenko T, Bykov M, Bykova E, Dubrovinsky L, Dubrovinskaia N 2019 Nat. Commun. 10 4515 DOI: 10.1038/s41467-019-12530-w
Du H F, Ge Y F, Guo W, Zhu J L, Yao Y G PCCP revision
Eremets M I 1996 High Pressure Experimental Methods Oxford Oxford Univ. Press
Eremets M I, Gavriliuk A G, Serebryanaya N R, Trojan I A, Dzivenko D A, Boehler R, Mao H K, Hemley R J 2004 J. Chem. Phys. 121 11296 DOI: 10.1063/1.1814074
Eremets M I, Hemley R J, Mao H K, Gregoryanz E 2001 Nature 411 170 DOI: 10.1038/35075531
Benchafia E M, Yao Z H, Yuan G, Chou T M, Piao H, Wang X Q, Iqbal Z 2017 Nat. Commun. 8 930 DOI: 10.1038/s41467-017-00060-2
Shi X H, Liu B, Yao Z, Liu B B 2020 Chin. Phys. Lett. 37 047101 DOI: 10.1088/0256-307X/37/4/047101
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[3] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[4] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[5] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[6] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[7] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[8] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[9] Structural stability and vibrational characteristics of CaB6 under high pressure
Mingkun Liu(刘明坤), Can Tian(田灿), Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(6): 068101.
[10] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[11] Inclusions in large diamond single crystals at different temperatures of synthesis
Fei Han(韩飞), Shang-Sheng Li(李尚升), Xue-Fei Jia(贾雪菲), Wei-Qin Chen(陈玮琴), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Kun-Peng Yu(于昆鹏), Jian-Kang Wang(王健康), Yu-Min Wu(吴玉敏), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(2): 028103.
[12] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[13] Unusual softening behavior of yield strength in niobium at high pressures
Qiu-Min Jing(敬秋民), Qiang He(何强), Yi Zhang(张毅), Shou-Rui Li(李守瑞), Lei Liu(柳雷), Qi-Yue Hou(侯琪玥), Hua-Yun Geng(耿华运), Yan Bi(毕延), Yu-Ying Yu(俞宇颖), Qiang Wu(吴强). Chin. Phys. B, 2018, 27(10): 106201.
[14] High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite
Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善). Chin. Phys. B, 2018, 27(1): 017402.
[15] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
No Suggested Reading articles found!