Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 103103    DOI: 10.1088/1674-1056/aba9bb

Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound

Guang Yang(杨光)1,†(), Kaifeng Chen(陈凯锋)1, Gang Wang(王岗)1, Dapeng Yang(杨大鹏)2
1 Basic Teaching Department, Jiaozuo University, Jiaozuo 454000, China
2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China

We execute the density functional theory (DFT) and time-dependent density functional theory (TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramolecular proton transfer (ESIPT) mechanism for the novel 2,6-dimethyl phenyl (DMP-HBT-py) system. Firstly, we check and confirm the formation and stabilization of hydrogen bonding interaction for DMP-HBT-py. Via optimized geometrical parameters of primary chemical bond and infrared (IR) spectra, we find O–H⋯N hydrogen bond of DMP-HBT-py should be strengthened in S1 state. Insights into frontier molecular orbitals (MOs) analyses, we infer charge redistribution and charge transfer (ICT) phenomena motivate ESIPT trend. Via probing into potential energy curves (PECs) in related electronic states, we come up with the ultrafast ESIPT behavior due to low potential barrier. Furthermore, we search the reaction transition state (TS) structure, the ultrafast ESIPT behavior and mechanism of DMP-HBT-py compound can be re-confirmed. We sincerely wish this work could play roles in further developing novel applications based on DMP-HBT-py compound and in promoting efficient solid emitters in OLEDs in future.

Keywords:  infrared vibrational spectra      intramolecular charge transfer      potential energy curve      excited state intramolecular proton transfer  
Received:  21 June 2020      Revised:  15 July 2020      Published:  05 October 2020
PACS: (Time-dependent density functional theory) (Electronic structure and bonding characteristics) (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Corresponding Authors:  Guang Yang(杨光)   
About author: 
†Corresponding author. E-mail:
* Project supported by the Science and Technology Research Project of Henan Province, China (Grant No. 172102210391) and the Higher Vocational School Program for Key Teachers from Department of Education of Henan Province, China (Grant No. 2019GZGG042).

Cite this article: 

Guang Yang(杨光), Kaifeng Chen(陈凯锋), Gang Wang(王岗), Dapeng Yang(杨大鹏) Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound 2020 Chin. Phys. B 29 103103

Fig. 1.  

View of DMP-HBT-py and its proton-transfer DMP-HBT-py-PT tautomer at B3LYP/TZVP (hexane solvent) level. Red: O atom; blue: H atom; yellow: C atom; violet: N atom; green: S atom.

S0 S1 S0 S1
O–H 0.9924 1.0211 1.5904 1.7569
H–N 1.7378 1.6180 1.0640 1.0363
δ (O–H–N) 146.6° 151.1° 141.0° 135.6°
Table 1.  

Optimized geometrical parameters (bond length (in unit Å) and bond angle (in unit (°)) of hydrogen bond O–H⋯N of DMP-HBT-py and O⋯H–N of DMP-HBT-py-PT in S0 and S1 states based on the DFT/TDDFT methods with IEFPCM (hexane) model.

Fig. 2.  

Simulated IR spectra for DMP-HBT-py (a) and DMP-HBT-py-PT (b) structures in hexane solvent in S0 and S1 states. (a) The O–H stretching vibrational mode of DMP-HBT-py form. (b) The H–N stretching vibrational mode of DMP-HBT-py-PT structure.

Fig. 3.  

The HOMO and LUMO of DMP-HBT-py compound via TDDFT/B3LYP/TZVP theoretical level. In CDD map, the regions with increased electron densities are shown in violet, whereas those with decreased electron densities are shown in light blue.

Fig. 4.  

The constructed PECs of DMP-HBT-py system via fixing O–H bond length in S0 and S1 states.

Transition λ/nm f Composition CI/%
DMP-HBT-py S0 → S1 417 0.9397 H → L 92.75%
S0 → S2 336 0.14013 H → L + 1 81.45%
H-1 → L 8.28%
Table 2.  

Vertical excitation energies (in unit nm), oscillator strengths (f), and relevant transition composition as well as percentage (%) for DMP-HBT-py compound.

Fig. 5.  

The TS structure for DMP-HBT-py system along with ESIPT path. Herein, the imaginary frequency and its vibrational eigenvector are also shown.

Zhao G, Han K 2012 Acc. Chem. Res. 45 404 DOI: 10.1021/ar200135h
Zhao G, Han K, Lei Y, Dou Y 2007 J. Chem. Phys. 127 094307 DOI: 10.1063/1.2768347
Li J, Wu Y, Xu Z, Liao Q, Zhang H, Zhang Y, Xiao L, Yao J, Fu H 2017 J. Mater. Chem. C 5 12235 DOI: 10.1039/c7tc04207h
Zhao J, Dong H, Yang H, Zheng Y 2018 Org. Chem. Front 5 2710 DOI: 10.1039/C8QO00688A
Zhao H, Sun C, Liu X, Yin H, Shi Y 2019 Chin. Phys. B 28 018201 DOI: 10.1088/1674-1056/28/1/018201
Zhao J, Dong H, Zheng Y 2018 J. Lumin. 195 228 DOI: 10.1016/j.jlumin.2017.11.026
Miao C, Shi Y 2011 J. Comput. Chem. 32 3058 DOI: 10.1002/jcc.21888
Demchenko A, Tang K, Chou P 2013 Chem. Soc. Rev. 42 1379 DOI: 10.1039/C2CS35195A
Zhao J, Chen J, Liu J, Hoffmann M 2015 Phys. Chem. Chem. Phys. 17 11990 DOI: 10.1039/C4CP05651E
Qu R, Liu H, Feng M, Yang X, Wang Z 2012 J. Chem. Eng. Data 57 2442 DOI: 10.1021/je300407g
Li G, Chu T 2011 Phys. Chem. Chem. Phys. 13 20766 DOI: 10.1039/c1cp21470e
Liu S, Pan J, Wei D, Xu J, Zhou Y, Song Y 2019 Can. J. Phys. 97 721 DOI: 10.1139/cjp-2018-0503
Zhang M, Zhou Q, Du C, Ding Y, Song P 2016 RSC Adv. 6 59389 DOI: 10.1039/C6RA11140H
Yin H, Shi Y 2018 Chin. Phys. B 27 058201 DOI: 10.1088/1674-1056/27/5/058201
Zhao J, Dong H, Zheng Y 2018 J. Phys. Chem. A 122 1200 DOI: 10.1021/acs.jpca.7b10492
Li G, Li W, Zhang H, Sun X 2014 J. Theor. Comput. Chem. 13 1450006 DOI: 10.1142/S0219633614500060
Li G, Wang J, Zhang H, Li W, Wang F, Liang Y 2014 Chem. Phys. Lett. 616 30 DOI: 10.1016/j.cplett.2014.10.029
Ma H, Huang J 2016 RSC Adv. 6 96147 DOI: 10.1039/C6RA16907D
Zhao J, Chen J, Cui Y, Wang J, Xia L, Dai Y, Song P, Ma F 2015 Phys. Chem. Chem. Phys. 17 1142 DOI: 10.1039/C4CP04135F
Li H, Ma L, Yin H, Shi Y 2018 Chin. Phys. B 27 098201 DOI: 10.1088/1674-1056/27/9/098201
Liu S, Ma Y, Yang Y, Liu S, Li Q, Song Y 2018 Chin. Phys. B 27 023103 DOI: 10.1088/1674-1056/27/2/023103
Chen H, Zhao J, Huang J, Liang Y 2019 Phys. Chem. Chem. Phys. 21 7447 DOI: 10.1039/C9CP00374F
Zhao J, Zheng Y 2017 Sci. Rep. 7 44897 DOI: 10.1038/srep44897
Xiao H, Chen K, Cui D, Jiang N, Yin G, Wang J, Wang R 2014 New J. Chem. 38 2386 DOI: 10.1039/c3nj01557b
Stasyuk A, Chen Y, Chen C, Wu P, Chou P 2016 Phys. Chem. Chem. Phys. 18 24428 DOI: 10.1039/C6CP05236C
Tang K, Chen C, Chuang H, Chen J, Chen Y, Lin Y, Shen J, Hu W, Chou P 2011 J. Phys. Chem. Lett. 2 3063 DOI: 10.1021/jz201439w
Dahal D, McDonald L, Bi X, Abeywickrama C, Gombedza F, Konopka M, Paruchuri S, Pang Y 2017 Chem. Commun. 53 3697 DOI: 10.1039/C7CC00700K
Wang J, Li Y, Duah E, Paruchuri S, Zhou D, Pang Y 2014 J. Mater. Chem. B 2 2008 DOI: 10.1039/c3tb21339k
Zhang X, Han J, Li Y, Sun C, Su X, Shi Y, Yin H 2020 Chin. Phys. B 29 038201 DOI: 10.1088/1674-1056/ab6d50
Liu X, Yin H, Li H, Shi Y 2017 Spectrochim. Acta Part. A 177 1 DOI: 10.1016/j.saa.2017.01.022
Zhao J, Liu X, Zheng Y 2017 J. Phys. Chem. A 121 4002 DOI: 10.1021/acs.jpca.7b01404
Li H, Yin H, Liu X, Shi Y, Jin M, Ding D 2017 Spectrochim. Acta Part. A 184 270 DOI: 10.1016/j.saa.2017.05.027
Xu L, Zhang T, Zhang Q, Yang D 2020 Chin. Phys. B 29 053102 DOI: 10.1088/1674-1056/ab8208
Zhao J, Chen J, Song P, Liu J, Ma F 2015 J. Clust. Sci. 26 1463 DOI: 10.1007/s10876-014-0830-1
Wan M, Jin C, Yu Y, Huang D, shao J 2017 Chin. Phys. B 26 033101 DOI: 10.1088/1674-1056/26/3/033101
Zhao J, Yang Y 2016 J. Mol. Liq 220 735 DOI: 10.1016/j.molliq.2016.05.029
Li W, Guo B, Chang C, Guo X, Zhang M, Li Y 2016 J. Mater. Chem. A 4 10135 DOI: 10.1039/C6TA04030F
Li X, Zhai Y, Zhang M, Song Y 2018 J. Phys. Org. Chem. 31 3821
Zhao J, Song P, Ma F 2014 Commun. Comput. Chem. 2 117 DOI: 10.4208/cicc.2014.v2.n3.3
Peng C, Shen J, Chen Y, Wu P, Hung W, Hu W, Chou P 2015 J. Am. Chem. Soc. 137 14349 DOI: 10.1021/jacs.5b08562
Abeywickrama C, Wijesinghe K, Stahelin R, Pang Y 2017 Chem. Commun. 53 5886 DOI: 10.1039/C7CC03417B
Zhao J, Dong H, Yang H, Zheng Y 2019 ACS Appl. Bio. Mater. 2 5182 DOI: 10.1021/acsabm.9b00818
Kumar G, Paul K, Luxami V 2020 New J. Chem. 44 12866 DOI: 10.1039/d0nj01651a
Nguyen H, Trinh B, Nguyen N, Dang S, Phama H, Dguyen L 2011 Phytochem. Lett. 4 48 DOI: 10.1016/j.phytol.2010.11.006
Niu Y, Wang R, Pu L, Zhang Y 2019 Dyes Pigm. 170 107594 DOI: 10.1016/j.dyepig.2019.107594
Bultinck P, Alsenoy C, Ayers P, Carbo-Dorca R 2007 J. Chem. Phys. 126 144111 DOI: 10.1063/1.2715563
Geldof D, Krishtal A, Blockhuys F, Alsenoy C 2011 J. Chem. Theory Comput. 7 1328 DOI: 10.1021/ct100743h
Verstraelen T, Ayers P, Speybroeck V, Waroquier M 2013 J. Chem. Theory Comput. 9 2221 DOI: 10.1021/ct4000923
Zhao J, Yao H, Liu J, Hoffmann M 2015 J. Phys. Chem. A 119 681 DOI: 10.1021/jp5120459
Zhou L, Liu J, Zhao G, Shi Y, Peng X, Han K 2007 Chem. Phys. 333 179 DOI: 10.1016/j.chemphys.2007.01.019
Rocard J, Berezin A, Leo F, Bonifazi D 2015 Angew. Chem. Int. Ed. 54 15739 DOI: 10.1002/anie.201507186
Zhao J, Li P 2015 RSC Adv. 5 73619 DOI: 10.1039/C5RA14601A
Moorthy J, Natarajan P, Venkatakrishnan, Huang D, Chow T 2007 Org. Lett. 9 5215 DOI: 10.1021/ol7023136
Zhao G, Northrop B, Stang P, Han K 2010 J. Phys. Chem. A 114 3418 DOI: 10.1021/jp911597z
Garo F, Haner R 2012 Angew. Chem. Int. Ed. 51 916 DOI: 10.1002/anie.201103295
Nakazato T, Kamatsuka T, Inoue J, Sakurai T, Seki S, Shinokubo H, Miyake Y 2018 Chem. Commun. 54 5177 DOI: 10.1039/C8CC01937A
Wang Y, Jia M, Zhang Q, Song X, Yang D 2019 Chin. Phys. B 28 103105 DOI: 10.1088/1674-1056/ab4042
Zhao G, Northrop B, Han K, Stang P 2010 J. Phys. Chem. A 114 9007 DOI: 10.1021/jp105009t
Zhao G, Chen R, Sun M, Liu J, Li G, Gao Y, Han K, Yang X, Sun L 2008 Chem. Eur. J. 14 6935 DOI: 10.1002/chem.200701868
Yin H, Zhang Y, Zhao H, Yang G, Shi Y, Zhang S, Ding D 2018 Dyes Pigm. 159 506 DOI: 10.1016/j.dyepig.2018.07.032
Han J, Liu X, Sun C, Li Y, Yin H, Shi Y 2018 RSC Adv. 8 29589 DOI: 10.1039/C8RA05812A
Li H, Han J, Zhao H, Liu X, Luo Y, Shi Y, Liu C, Jin M, Ding D 2019 J. Phys. Chem. Lett. 10 748 DOI: 10.1021/acs.jpclett.9b00026
Fan G, Han K, He G 2013 Chin. J. Chem. Phys. 26 635 DOI: 10.1063/1674-0068/26/06/635-645
Cong L, Yin H, Shi Y, Jin M, Ding D 2015 RSC Adv. 5 1205 DOI: 10.1039/C4RA09773D
Li H, Han J, Zhao H, Liu X, Ma L, Sun C, Yin H, Shi Y 2018 J. Clust. Sci. 29 585 DOI: 10.1007/s10876-018-1371-9
Merrick J, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683 DOI: 10.1021/jp073974n
Palafox M, Talaya J, Guerrero-Martinez A, Tardajos G, Kumar H, Vats J, Rastogi V 2010 Spectrosc. Lett. 43 51 DOI: 10.1080/00387010903261149
Zhao J, Dong H, Yang H, Zheng Y 2019 ACS Appl. Bio. Mater 2 2060 DOI: 10.1021/acsabm.9b00088
Zhang M, Zhou Q, Zhang M, Dai Y, Song P, Jiang Y 2017 J. Clust. Sci. 28 1191 DOI: 10.1007/s10876-016-1122-8
Qu R, Zhang Q, Zhang X, Wang Z 2012 Spectrosc. Lett. 45 240 DOI: 10.1080/00387010.2011.607206
Tang K, Chang M, Lin T, Pan H, Fang T, Chen K, Hung W, Hsu Y, Chou P 2011 J. Am. Chem. Soc. 133 17738 DOI: 10.1021/ja2062693
Chou P, Wei C, Wu G, Chen W 1999 J. Am. Chem. Soc. 121 12186 DOI: 10.1021/ja9917619
Hsieh C, Chou P, Shih C, Chuang W, Chung M, Lee J, Joo T 2011 J. Am. Chem. Soc. 133 2932 DOI: 10.1021/ja107945m
Tseng H, Liu J, Chen Y, Chao C, Liu K, Chen C, Lin T, Hung C, Chou Y, Lin T, Wang T, Chou O 2015 J. Phys. Chem. Lett. 6 1477 DOI: 10.1021/acs.jpclett.5b00423
Wang J, Chu Q, Liu X, Wesdemiotis C, Pang Y 2013 J. Phys. Chem. B 117 4127 DOI: 10.1021/jp401612u
Wang J, Liu X, Pang Y 2014 J. Mater. Chem. B 2 6634 DOI: 10.1039/C4TB01109K
McDonald L, Liu B, Taraboletti A, Whiddon K, Shriver L, Konopka M, Liu Q, Pang Y 2016 J. Mater. Chem. B 4 7902 DOI: 10.1039/C6TB02456D
Wang J, Chen W, Liu X, Wesdemiotis C, Pang Y 2014 J. Mater. Chem. B 2 3349 DOI: 10.1039/c4tb00020j
[1] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[2] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[3] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[4] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[5] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[6] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[7] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[8] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[9] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[10] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[11] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[12] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[13] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[14] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[15] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan, Tan Bin, Xie An-Dong, Yan Bing, Ding Da-Jun. Chin. Phys. B, 2015, 24(4): 043401.
[2] Li Xue-Chen, Liu Zhi-Hui, Jia Peng-Ying, Li Li-Chun, Yin Zeng-Qian, Dong Li-Fang. Study on the transition from filamentary discharge to diffuse discharge by using a dielectric barrier surface discharge device[J]. Chin. Phys., 2007, 16(10): 3016 -3021 .
[3] Liu Chong-Xin. A new hyperchaotic dynamical system[J]. Chin. Phys., 2007, 16(11): 3279 -3284 .
[4] Zhang Guo-Feng, Liu Jia. Entanglement in a generalized Jaynes--Cummings model[J]. Chin. Phys., 2007, 16(12): 3595 -3600 .
[5] Wu Chun-Ya, Li Xue-Dong, Zhao Shu-Yun, Li Juan, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Fang. Solution-based metal induced crystallization of a-Si[J]. Chin. Phys. B, 2009, 18(3): 1237 -1241 .
[6] Wang Liang-Ji, Zhang Shu-Ming, Zhu Ji-Hong, ZhuJian-Jun, Zhao De-Gang, Liu Zong-Shun, Jiang De-Sheng, WangYu-Tian, Yang Hui. Effect of surface treatment of GaN based light emitting diode wafers on the leakage current of light emitting diode devices[J]. Chin. Phys. B, 2010, 19(1): 17307 -017307 .
[7] Sun Xiao-Juan, Lu Qi-Shao. Spatial coherence resonance induced by coloured noise and parameter diversity in a neuronal network[J]. Chin. Phys. B, 2010, 19(4): 40504 -040504 .
[8] Wang Ke-Dong, Duan Kun-Jie, Liu Yu-Fang. Methyl orbital signatures in 2-amino-1-propanol[J]. Chin. Phys. B, 2012, 21(7): 73103 -073103 .
[9] Gong Yong-Wang, Song Yu-Rong, Jiang Guo-Ping. Global dynamics of a novel multi-group model for computer worms[J]. Chin. Phys. B, 2013, 22(4): 40204 -040204 .
[10] Zhou Ren-Lai, Ju You-Lun, Zhao Jie, Yang Chao,Wang Yue-Zhu. A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser [J]. Chin. Phys. B, 2013, 22(6): 64208 -064208 .