Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098503    DOI: 10.1088/1674-1056/aba611
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates

Xin Wen(闻馨)1, Rui Wu(吴锐)1, Wen-Yun Yang(杨文云)1,2,3, Chang-Sheng Wang(王常生)1,2,3, Shun-Quan Liu(刘顺荃)1,2,3, Jing-Zhi Han(韩景智)1,2,3, Jin-Bo Yang(杨金波)1,2,3
1 State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
2 Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  Significant electric control of exchange bias effect in a simple CoO1-δ/Co system, grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) (PMN-PT) substrates, is achieved at room temperature. Obvious changes in both the coercivity field (HC) and the exchange bias field (HE), of 31% and 5%, respectively, have been observed when the electric field is applied to the substrate. While the change of coercivity is related to the enhanced uniaxial anisotropy in the ferromagnetic layer, the change of the exchange bias field can only originate from the spin reorientation in the antiferromagnetic CoO1-δ layer caused by the strain-induced magnetoelastic effect. A large HE/HC > 2, and HE~ 110 Oe at room temperature, as well as the low-energy fabrication of this system, make it a practical system for spintronic device applications.
Keywords:  electric control      exchange bias      PMN-PT      magnetic anisotropy  
Received:  08 June 2020      Revised:  03 July 2020      Published:  05 September 2020
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  85.75.Dd (Magnetic memory using magnetic tunnel junctions)  
  75.50.-y (Studies of specific magnetic materials)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206303 and 2017YFA020630) and the National Natural Science Foundation of China (Grant Nos. 11975035 and 51731001).
Corresponding Authors:  Rui Wu     E-mail:  wurui2010@pku.edu.cn

Cite this article: 

Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波) Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates 2020 Chin. Phys. B 29 098503

[1] Newhouse-illige T, Liu Y, Xu M, Reifsnyder Hickey D, Kundu A, Almasi H, Bi C, Wang X, Freeland J W, Keavney D J, Sun C J, Xu Y H, Rosales M, Cheng X M, Zhang S, Mkhoyan K A and Wang W G 2017 Nat. Commun. 8 15232
[2] Xiang L, Yu G, Hao W, Ong P V, Wong K, Qi H, Ebrahimi F, Upadhyaya P, Akyol M, Kioussis N, Han X, Amiri P K and Wang K L 2015 Appl. Phys. Lett. 107 142403.1
[3] Zhang L, Wing S and Leung C M 2015 J. Appl. Phys. 117 17A748
[4] Kiwi M 2001 J. Magn. Magn. Mater. 234 584
[5] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
[6] Wu R, Ding S, Lai Y, Tian G and Yang J 2018 Phys. Rev. B 97 024428
[7] Wu R, Xue M, Maity T, Peng Y, Giri S K, Tian G, MacManus-Driscoll J L and Yang J 2020 Phys. Rev. B 101 014425
[8] Gan H D, Matsukura F, Miura K, Ikeda S, Mizunuma K, Ohno H, Hayakawa J, Yamamoto H, Kanai S and Endo M 2010 Nat. Mater. 9 721
[9] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[10] Martí X, Sánchez F, Hrabovsky D, Fábrega L, Ruyter A, Fontcuberta J, Laukhin V, Skumryev V, García-Cuenca M V, Ferrater C, Varela M, Vilá A, Lüders U and Bobo J F 2006 Appl. Phys. Lett. 89 32510
[11] He X, Wang Y, Wu N, Caruso A, Vescovo E, Belashchenko K, A Dowben P and ChristianBinek 2010 Nat. Mater. 9 579
[12] Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C 2010 Nat. Mater. 9 756
[13] Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R and Dynes R C 2013 Phys. Rev. Lett. 110 067202
[14] Choi E M, Weal E, Bi Z, Wang H, Kursumovic A, Fix T, Blamire M G and MacManus-Driscoll J L 2013 Appl. Phys. Lett. 102 012905
[15] Ding S L, Wu R, Fu J B, Wen X, Du H L, Liu S Q, Han J Z, Yang Y C, Wang C S, Zhou D and Yang J B 2015 Appl. Phys. Lett. 107 172404
[16] Rizwan S, Ali S I, Zhang Q T, Zhang S, Zhao Y G, Anis-Ur-Rehman M, Tufail M and Han X F 2013 J. Appl. Phys. 114 104108.1
[17] Wu S Z, Miao J, Xu X G, Yan W, Reeve R, Zhang X H and Jiang Y 2015 Sci. Rep. 5 8905
[18] Rizwan S, Yu G Q, Zhang S, Zhao Y G and Han X F 2012 J. Appl. Phys. 112 064120
[19] Meiklejohn W H 1962 J. Appl. Phys. 33 1328
[20] Xia Y H, Wu R, Zhang Y F, Liu S Q, Du H L, Han J Z, Wang C S, Chen X P, Xie L, Yang Y C and Yang J B 2017 Phys. Rev. B 96 064440
[21] Wu X, Ambrose T and Chien C 1998 Appl. Phys. Lett. 72 2176
[22] Bai Y, Yun G and Bai N 2010 J. Appl. Phys. 107 033905
[23] Sander D 1999 Rep. Prog. Phys. 62 809
[24] Valeri S, Altieri S and Luches P 2010 Magnetic Properties of Antiferromagnetic Oxide Materials: Surfaces, Interfaces, and Thin Films (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp. 25-68
[25] Chen Y T, Jen S U, Yao Y D, Wu J M, Lee C C and Sun A C 2006 IEEE Transactions on Magnetics 42 278
[1] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[2] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[3] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[4] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[5] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[6] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[7] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[8] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[9] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[10] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
[11] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[12] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[13] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[14] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[15] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
No Suggested Reading articles found!