Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098101    DOI: 10.1088/1674-1056/aba60c
Special Issue: SPECIAL TOPIC — Physics in neuromorphic devices
SPECIAL TOPIC—Physics in neuromorphic devices Prev   Next  

A synaptic transistor with NdNiO3

Xiang Wang(汪翔)1,2, Chen Ge(葛琛)1,2, Ge Li(李格)1, Er-Jia Guo(郭尔佳)1, Meng He(何萌)1, Can Wang(王灿)1,2,3, Guo-Zhen Yang(杨国桢)1, Kui-Juan Jin(金奎娟)1,2,3
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Recently, neuromorphic devices for artificial intelligence applications have attracted much attention. In this work, a three-terminal electrolyte-gated synaptic transistor based on NdNiO3 epitaxial films, a typical correlated electron material, is presented. The voltage-controlled metal-insulator transition was achieved by inserting and extracting H+ ions in the NdNiO3 channel through electrolyte gating. The non-volatile conductance change reached 104 under a 2 V gate voltage. By manipulating the amount of inserted protons, the three-terminal NdNiO3 artificial synapse imitated important synaptic functions, such as synaptic plasticity and spike-timing-dependent plasticity. These results show that the correlated material NdNiO3 has great potential for applications in neuromorphic devices.
Keywords:  pulsed laser deposition      synaptic transistor      electrolyte gating      artificial synapse      NdNiO3     
Received:  09 May 2020      Published:  05 September 2020
PACS:  81.15.Fg (Pulsed laser ablation deposition)  
  84.35.+i (Neural networks)  
  85.30.Tv (Field effect devices)  
  87.19.L- (Neuroscience)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303604 and 2019YFA0308500), the National Natural Science Foundation of China (Grant Nos. 11674385, 11404380, 11721404, and 11874412), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018008), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJSSW-SLH020).
Corresponding Authors:  Chen Ge, Kui-Juan Jin     E-mail:;

Cite this article: 

Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟) A synaptic transistor with NdNiO3 2020 Chin. Phys. B 29 098101

[1] Godfrey M D and Hendry D F 1964 IEEE Annals of the History of Computing. 15 11
[2] Calimera A, Macii E and Poncino M 2013 Funct. Neurol. 28 191
[3] Gerstner W, Sprekeler H and Deco G 2012 Science 338 60
[4] Abbott L F and Nelson S B 2000 Nat. Neurosci. 3 1178
[5] Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S, Kawasaki M, Iwasa Y and Tokura Y 2012 Nature 487 459
[6] Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G and Parkin S S P 2013 Science 339 1402
[7] van de Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Alec Talin A and Salleo A 2017 Nat. Mater. 16 414
[8] Zhong H, Sun Q C, Li G, Du J Y, Huang H Y, Guo E J, He M, Wang C, Yang G Z, Ge C and Jin K J 2020 Chin. Phys. B. 29 040703
[9] Matveyev Y, Egorov K, Markeev A and Zenkevich A 2015 J. Appl. Phys. 117 044901
[10] Guo C L, Wang B B, Xia W, Guo Y F and Xue J M 2019 Chin. Phys. Lett. 36 078501
[11] Eryilmaz S B, Kuzum D, Jeyasingh R, Kim S B, Sky M B, Lam C and Wong H S P 2014 Frontiers in Neuroscience. 8 205
[12] Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L and Liu M 2012 Adv. Mater. 24 201104104
[13] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
[14] Kent A D and Worledge D C 2015 Nat. Nanotechnol. 10 187
[15] Mizrahi A, Hirtzlin T, Fukushima A, Kubota H, Yuasa S, Grollier J and Querlioz D 2018 Nat. Commun. 9 1533
[16] Bichler O, Suri M, Querlioz D, Vuillaume D, DeSalvo B, and Gamrat C 2012 IEEE Transactions on Electron Devices 59 2206
[17] Yang J J, Pickett M D, Li X, Ohlberg D A A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
[18] Li J K, Ge C, Du J Y, Wang C, Yang G Z and Jin K J 2020 Adv. Mater. 32 1905764
[19] Yang J T, Ge C, Du J Y, Huang H Y, He M, Wang C, Lu H B, Yang G Z and Jin K J 2018 Adv. Mater. 30 1801548
[20] Chanthbouala A, Garcia V, Cherif R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C and Mathur N D 2012 Nat. Mater. 11 860
[21] Ge C, Jin K J, Gu L, Peng L C, Hu Y S, Guo H Z, Shi H F, Li J K, Wang J O, Guo X X, Wang C, He M, Lu H B and Yang G Z 2015 Adv. Mater. Interfaces 2 1500407
[22] Paul Y, Jun K H, Hong Z, Won B G, Sung P J, Jung K C and Sik Y T 2017 Nanotechnology 28 225201
[23] Wang J B, Li Y X, Yin C Q, Yang Y and Ren T L 2017 IEEE. Electron. Dev. Lett. 38 191
[24] Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z and Jin K J 2019 Adv. Mater. 31 1900379
[25] Huang H Y, Ge C, Zhang Q H, Liu C X, Du J Y, Li J K, Wang C, Gu L, Yang G Z and Jin K J 2019 Adv. Funct. Mater. 29 1902702
[26] Ge C, Li G, Zhou Q L, Du J Y, Guo E J, He M, Wang C, Yang G Z and Jin K J 2020 Nano Energy 67 104268
[27] Liu Y H, Zhu L Q, Feng P, Shi Y and Wan Q 2015 Adv. Mater. 27 5599
[28] Girardot C, Kreisel J, Pignard S, Caillault N and Weiss F 2008 Phys. Rev. B 78 104101
[29] Middey S, Chakhalian J, Mahadevan P, Freeland J W, Millis A J and Sarma D D 2016 Annu. Rev. Mater. Res. 46 305
[30] Scherwitzl B R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G and Triscone J M 2010 Adv. Mater. 22 5517
[31] Oh C, Jo M and Son J 2019 ACS. Applied Materials & Interface 11 15733
[32] Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland W, Li J, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S K R S and Ramanathan S 2018 Nature 553 68
[33] Nishitani Y, Kaneko Y, Ueda M, Morie T and Fujii E 2012 J. Appl. Phys. 111 124108
[1] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[2] Recent progress in optoelectronic neuromorphic devices
Yan-Bo Guo(郭延博), Li-Qiang Zhu(竺立强). Chin. Phys. B, 2020, 29(7): 078502.
[3] An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing
Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水). Chin. Phys. B, 2020, 29(7): 070701.
[4] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[5] Growth of high quality Sr2IrO4 epitaxial thin films onconductive substrates
Hui Xu(徐珲), Zhangzhang Cui(崔璋璋), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林). Chin. Phys. B, 2019, 28(7): 078102.
[6] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[7] Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition
Y M Lu(吕有明), C Li(李超), X H Chen(陈相和), S Han(韩瞬), P J Cao(曹培江), F Jia(贾芳), Y X Zeng(曾玉祥), X K Liu(刘新科), W Y Xu(许望颖), W J Liu(柳文军), D L Zhu(朱德亮). Chin. Phys. B, 2019, 28(1): 018504.
[8] Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited
Li Lu, Yan Pei-Guang, Wang Yong-Gang, Duan Li-Na, Sun Hang, Si Jin-Hai. Chin. Phys. B, 2015, 24(12): 124204.
[9] Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model
Rong Xi-Ming, Chen Jun, Li Jing-Tian, Zhuang Jun, Ning Xi-Jing. Chin. Phys. B, 2015, 24(12): 128706.
[10] Asymmetric reversible diode-like resistive switching behaviors in ferroelectric BaTiO3 thin films
Zhang Fei, Lin Yuan-Bin, Wu Hao, Miao Qing, Gong Ji-Jun, Chen Ji-Pei, Wu Su-Juan, Zeng Min, Gao Xing-Sen, Liu Jun-Ming. Chin. Phys. B, 2014, 23(2): 027702.
[11] The effects of Zn vacancies on ferromagnetism in Cu-doped ZnO films controlled by oxygen pressure and Li doping
Ran Cong-Jun, Yang Hai-Ling, Wang Yan-Kai, Hassan Farooq M, Zhou Li-Gong, Xu Xiao-Guang, Jiang Yong. Chin. Phys. B, 2013, 22(6): 067503.
[12] High temperature thermoelectric properties of highly c-axis oriented Bi2Sr2Co2Oy thin films fabricated by pulsed laser deposition
Chen Shan-Shan, Wang Shu-Fang, Liu Fu-Qiang, Yan Guo-Ying, Chen Jing-Chun, Wang Jiang-Long, Yu Wei, Fu Guang-Sheng. Chin. Phys. B, 2012, 21(8): 087306.
[13] Charge ordering modulations in Bi0.4Ca0.6MnO3 film with a thickness of 110 nm
Ding Yan-Hua, Wang Yi-Qian, Cai Rong-Sheng, Chen Yun-Zhong, Sun Ji-Rong. Chin. Phys. B, 2012, 21(8): 087502.
[14] boldmath In situ high temperature X-ray diffraction studies of ZnO thin film
Chen Xiang-Cun, Zhou Jie-Ping, Wang Hai-Yang, Xu Peng-Shou, Pan Guo-Qiang. Chin. Phys. B, 2011, 20(9): 096102.
[15] A comparative study of YBa2Cu3O7-δ/YSZ bilayer films deposited on silicon-on-insulator substrates with and without HF pretreatment
Wang Ping, Li Jie, Chen Ying-Fei, Li Shao, Wang Jia, Xie Ting-Yue, Zheng Dong-Ning. Chin. Phys. B, 2009, 18(4): 1679-1683.
No Suggested Reading articles found!