Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110305    DOI: 10.1088/1674-1056/aba609
GENERAL Prev   Next  

Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation

Jian-Gong Hu(胡建功)1, †, Xi Chen(陈曦)2,3, Li-Yong Wang(王立勇)4,5, Qing-Hong Liao(廖庆洪)1, and Qing-Nian Wang(汪庆年)1$
1 School of Information Engineering, Nanchang University, Nanchang 330031, China
2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
3 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
4 Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
5 School of Information Science and Engineering, Shandong University, Qingdao 266237, China

Systematic error suppression and test data processing are very important in improving the accuracy and sensitivity of the atom interferometer (AI)-based weak-equivalence-principle (WEP) test in space. Here we present a spectrum correlation method to investigate the test data of the AI-based WEP test in space by analyzing the characteristics of systematic errors and noises. The power spectrum of the Eötvös coefficient η, systematic errors, and noises in AI-based WEP test in space are analyzed and calculated in detail. By using the method, the WEP violation signal is modulated from direct current (DC) frequency band to alternating current (AC) frequency band. We find that the signal can be effectively extracted and the influence of systematic errors can be greatly suppressed by analyzing the power spectrum of the test data when the spacecraft is in an inertial pointing mode. Furthermore, the relation between the Eötvös coefficient η and the number of measurements is obtained under certain simulated parameters. This method will be useful for both isotopic and nonisotopic AI-based WEP tests in space.

Keywords:  atom interferometer      weak equivalence principle      spectral correlation      systematic error  
Received:  14 May 2020      Revised:  29 June 2020      Accepted manuscript online:  15 July 2020
Fund: the National Natural Science Foundation of China (Grants No. 11947057), the Foundation for Distinguished Young Scientist of Jiangxi Province, China (Grant No. 2016BCB23009), and the Postdoctoral Applied Research Program of Qingdao City, Shandong Province, China (Grant No. 62350079311135).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$ Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation 2020 Chin. Phys. B 29 110305

Fig. 1.  

The schematic diagram of the spacecraft’s orbit in space. The spacecraft moves around the earth in inertial pointing mode.

Fig. 2.  

The elliptic curve and the Lissajous curve. (a) The elliptic curve obtained by synchronously scanning the phase and plotting P1 versus P2, the range of ϕscan is 2π. (b) The Lissajous curve obtained by plotting P1 versus P2. The ratio of effect vectors is α = 780/767, and the range of ϕscan,1 is 20π.

Fig. 3.  

Numerical simulation of the power spectrum of WEP tests in space. The Eötvös coefficient η0 is set to be 1×10−15. The standard deviations of noises in a single measurement cycle are set to be (a) 1×10−13, (b) 1×10−14, (c) 1×10−15, and (d) 1×10−16, respectively.

Fig. 4.  

Numerical simulation of the power spectrum of WEP tests in space. On the basis of Fig. 3(a), the number of measurements is increased to 1×106. ση is 1×10−13.

Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181 DOI: 10.1103/PhysRevLett.67.181
Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051 DOI: 10.1103/RevModPhys.81.1051
Barrett B, Cheiney P, Battelier B, Napolitano F, Bouyer P 2019 Phys. Rev. Lett. 122 043604 DOI: 10.1103/PhysRevLett.122.043604
Zhou M K, Duan X C, Chen L L, Luo Q, Xu Y Y, Hu Z K 2015 Chin. Phys. B 24 050401 DOI: 10.1088/1674-1056/24/5/050401
Bidel Y, Carraz O, Charrière R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107 DOI: 10.1063/1.4801756
Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610 DOI: 10.1103/PhysRevA.88.043610
Cheng B, Wang Z Y, Xu A P, Wang Q Y, Lin Q 2015 Chin. Phys. B 24 113704 DOI: 10.1088/1674-1056/24/11/113704
Karcher R, Imanaliev A, Merlet S, Dos Santos F P 2018 New J. Phys. 20 113041 DOI: 10.1088/1367-2630/aaf07d
Fang J, Hu J G, Chen X, Zhu H R, Zhou L, Zhong J Q, Wang J, Zhan M S 2018 Opt. Express 26 1586 DOI: 10.1364/OE.26.001586
Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X, Long Lin Q 2018 Acta Phys. Sin. 67 190302 in Chinese DOI: 10.7498/aps.67.20181121
Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607 DOI: 10.1103/PhysRevA.89.023607
Snadden M J, McGuirk J M, Bouyer P, Haritos K G, Kasevich M A 1998 Phys. Rev. Lett. 81 971 DOI: 10.1103/PhysRevLett.81.971
Pereira Dos Santos F 2015 Phys. Rev. A 91 063615 DOI: 10.1103/PhysRevA.91.063615
Duan X C, Zhou M K, Mao D K, Yao H B, Deng X B, Luo J, Hu Z K 2014 Phys. Rev. A 90 023617 DOI: 10.1103/PhysRevA.90.023617
Guastavson T L, Landragin A, Kasevich M A 2000 Class. Quantum Gravity 17 2385 DOI: 10.1088/0264-9381/17/12/311
Yao Z W, Lu S B, Li R B, Wang K, Cao L, Wang J, Zhan M S 2016 Chin. Phys. Lett. 33 083701 DOI: 10.1088/0256-307X/33/8/083701
Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Bordé Ch J, Landragin A 2006 Phys. Rev. Lett. 97 010402 DOI: 10.1103/PhysRevLett.97.010402
Savoie D, Altorio M, Fang B, Sidorenkov L A, Geiger R, Landragin A 2018 Sci. Adv. 4 eaau7948
Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518 DOI: 10.1038/nature13433
Fixler J B, Foster G T, McGuirk J M, Kasevich M A 2007 Science 315 74 DOI: 10.1126/science.1135459
Chiow S W, Herrmann S, Chu S, Müller H 2009 Phys. Rev. Lett. 103 050402 DOI: 10.1103/PhysRevLett.103.050402
Bouchendira R, Cladé P, Guellati-Khélifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801 DOI: 10.1103/PhysRevLett.106.080801
Parker R H, Yu C H, Zhong W C, Estey B, Muller H 2018 Science 360 191 DOI: 10.1126/science.aap7706
Müller H, Peters A, Chu S 2010 Nature 463 926 DOI: 10.1038/nature08776
Müller H, Chiow SW, Herrmann S, Chu S, Chung K Y 2008 Phys. Rev. Lett. 100 031101 DOI: 10.1103/PhysRevLett.100.031101
Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004 DOI: 10.1103/PhysRevLett.115.013004
Zhou L, He C, Yan S T, Chen X, Duan W T, Xu R D, Zhou C, Ji Y H, Sachin B, Wang Q, Hou Z, Xiong Z Y, Gao D F, Zhang Y Z, Ni W T, Wang J, Zhan M S 2019 arXiv: 1904.07096v2 [quant-ph]
Zhan M S, Wang J, Ni W T et al. 2019 Int. J. Mod. Phys. D 29 1940005 DOI: 10.1142/S0218271819400054
Schlippert D, Hartwig J, Albers H, Richardson L L, Schubert C, Roura A, Schleich W P, Ertmer W, Rasel E M 2014 Phys. Rev. Lett. 112 203002 DOI: 10.1103/PhysRevLett.112.203002
Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X, Tino G M 2014 Phys. Rev. Lett. 113 023005 DOI: 10.1103/PhysRevLett.113.023005
Duan X C, Deng X B, Zhou M K, Zhang K, Xu W J, Xiong F, Xu Y Y, Shao C G, Luo J, Hu Z K 2016 Phys. Rev. Lett. 117 023001 DOI: 10.1103/PhysRevLett.117.023001
Wang J, Zhan M S 2018 Acta Phys. Sin. 67 160402 in Chinese DOI: 10.7498/aps.67.20180621
Deng X B, Duan X C, Mao D K, Zhou M K, Shao C G, Hu Z K 2017 Chin. Phys. B 26 043702 DOI: 10.1088/1674-1056/26/4/043702
Bonnin A, Zahzam N, Bidel Y, Bresson A 2015 Phys. Rev. A 92 023626 DOI: 10.1103/PhysRevA.92.023626
Aguilera D N, Ahlers H, Battelier B et al. 2014 Class. Quantum Gravity 31 115010 DOI: 10.1088/0264-9381/31/11/115010
Lévèque T, Gauguet A, Michaud F, Pereira F, Dos Santos F P, Landragin A 2009 Phys. Rev. Lett. 103 080405 DOI: 10.1103/PhysRevLett.103.080405
Giese E, Roura A, Tackmann G, Rasel E M, Schleich W P 2013 Phys. Rev. A 88 053608 DOI: 10.1103/PhysRevA.88.053608
Sugarbaker A, Dickerson S M, Hogan J M, Johnson D M S, Kasevich M A 2013 Phys. Rev. Lett. 111 113002 DOI: 10.1103/PhysRevLett.111.113002
Zhou L, Xiong Z Y, Yang W, Tang B, Peng W C, Hao K, Li R B, Liu M, Wang J, Zhan M S 2011 Gen. Relat. Gravity 43 1931 DOI: 10.1007/s10714-011-1167-9
Hartwig J, Abend S, Schubert C, Schlippert D, Ahlers H, Posso-Trujillo K, Gaaloul N, Ertmer W, Rasel E M 2015 New J. Phys. 17 035011 DOI: 10.1088/1367-2630/17/3/035011
Williams J, Chiow S W, Yu N, Müller H 2016 New J. Phys. 18 025018 DOI: 10.1088/1367-2630/18/2/025018
Touboul P, Métris G, Rodrigues M et al. 2017 Phys. Rev. Lett. 119 231101 DOI: 10.1103/PhysRevLett.119.231101
Hu J G, Chen X, Fang J, Zhou L, Zhong J Q, Wang J, Zhan M S 2017 Phys. Rev. A 96 023618 DOI: 10.1103/PhysRevA.96.023618
Chen X, Zhong J Q, Song H W, Zhu L, Wang J, Zhan M S 2014 Phys. Rev. A 90 023609 DOI: 10.1103/PhysRevA.90.023609
Stockton J K, Wu X A, Kasevich M A 2007 Phys. Rev. A 76 033613 DOI: 10.1103/PhysRevA.76.033613
Fritz R 2004 Frequency Standards-Basics and Applications Germany Wiley-Vch Verlag 48 78 DOI: 10.1002/3527605991
Chiow S W, Williams J, Yu N, Müeller H 2017 Phys. Rev. A 95 021603 DOI: 10.1103/PhysRevA.95.021603
[1] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[2] Calibration of a compact absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(9): 093701.
[3] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[4] Tilt adjustment for a portable absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(7): 073701.
[5] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[6] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[7] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[8] Correlation method estimation of the modulation signal in the weak equivalence principle test
Jie Luo(罗杰), Liang-Cheng Shen(沈良程), Cheng-Gang Shao(邵成刚), Qi Liu(刘祺), Hui-Jie Zhang(张惠捷). Chin. Phys. B, 2018, 27(8): 080402.
[9] Comparison of the sensitivities for atom interferometers in two different operation methods
Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhu Zhu(祝竺), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(1): 013701.
[10] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[11] Effect of gravity gradient in weak equivalence principle test
Jia-Hao Xu(徐家豪), Cheng-Gang Shao(邵成刚), Jie Luo(罗杰), Qi Liu(刘祺), Lin Zhu(邾琳), Hui-Hui Zhao(赵慧慧). Chin. Phys. B, 2017, 26(8): 080401.
[12] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[13] Investigation of the thermal adaptability for a mobile cold atom gravimeter
Qi-Yu Wang(王启宇), Zhao-Ying Wang(王兆英), Zhi-Jie Fu(付志杰), Qiang Lin(林强). Chin. Phys. B, 2016, 25(12): 123701.
[14] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai, Yang Jun, Yan Shu-Hua, Hu Qing-Qing, Luo Yu-Kun, Zhu Shi-Yao. Chin. Phys. B, 2015, 24(8): 080302.
[15] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang, Duan Xiao-Chun, Chen Le-Le, Luo Qin, Xu Yao-Yao, Hu Zhong-Kun. Chin. Phys. B, 2015, 24(5): 050401.
No Suggested Reading articles found!