Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116801    DOI: 10.1088/1674-1056/aba604
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Energy storage performances regulated by BiMnO3 proportion in limited solid solution films

Fei Guo(郭飞), Zhifeng Shi(史智锋), Yaping Liu(刘亚平), and Shifeng Zhao(赵世峰)
School of Physical Science and Technology, Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China
Abstract  

Na0.5Bi0.5TiO3–BiMnO3 (NBT–BM) limited solid solution films were fabricated to investigate the lattice modification on the energy storage performances. The introduction of the BM solute lattice induces the NBT solvent lattices undergoing the transition from the pure phase, solid solution, solubility limit to precipitation. Correspondingly, the polarization states transfer from the macroscopic ferroelectric domains to nanodomains then to compound ferroelectric domains. The introduction of BiMnO3 generates great lattice changes including the local lattice fluctuation and the large lattice stretching, which enhance the energy storage performances, with the energy storage efficiency being enhanced from 39.2% to 53.2% and 51.7% and the energy density being enhanced from 33.1 J/cm3 to 76.5 J/cm3 and 83.8 J/cm3 for the BM components of 2% and 4%, respectively. The lattice modifications play a key role in the energy storage performances for limited solid solution films, which provides an alternative strategy for energy storage material.

Keywords:  limited solid solution      energy storage      relaxor      lattice engineering  
Received:  04 April 2020      Revised:  08 July 2020      Accepted manuscript online:  15 July 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11864028 and 11564028) and Inner Mongolia Science Foundation, China (Grant No. 2018MS01003).
Corresponding Authors:  Corresponding author. E-mail: zhsf@imu.edu.cn   

Cite this article: 

Fei Guo(郭飞), Zhifeng Shi(史智锋), Yaping Liu(刘亚平), and Shifeng Zhao(赵世峰) Energy storage performances regulated by BiMnO3 proportion in limited solid solution films 2020 Chin. Phys. B 29 116801

Fig. 1.  

(a) XRD patterns of NBT–BM limited solid solution films. (b) Enlarged XRD patterns. (c) Lattice parameters and the phase transition of limited solid solution. (d)–(g) HRTEM images of the (1 – x)NBT–xBM limited solid solution with x equaling to 0, 0.02, 0.04, and 0.06, respectively.

wRp Rp χ2 a = b = c/Å Volume/Å3
NBT 8.3% 6.4% 1.204 3.8899 58.857
NBT–0.02BMO 8.9% 6.8% 1.291 3.9107 59.811
NBT–0.04BMO 7.4% 5.6% 1.251 3.9168 60.089
NBT–0.06BMO 8.2% 6.5% 1.463 3.9192 60.199
Table 1.  

The refined XRD patterns of the NBT–BM limited solid solution.

Fig. 2.  

AFM surface morphology of (1 – x)NBT–xBM limited solid solution: (a) x = 0, (b) x = 0.02, (c) x = 0.04, (d) x = 0.06.

Fig. 3.  

(a)–(d) Temperature-dependent dielectric constants of the pure NBT, 0.98NBT–0.02BM, 0.96NBT–0.04BM, and 0.94NBT–0.06BM, respectively. (e) Dispersion coefficient γ of NBT–BM limited solid solution films.

Fig. 4.  

(a) The PE loops of the NBT–BM limited solid solution films at 1198 kV/cm. (b) The leakage current of the NBT–BM limited solid solution films. (c) Weibull distribution of breakdown strength for the NBT–BM limited solid solution films.

Fig. 5.  

(a) The PE loops of NBT–BM limited solid solution films near the breakdown electric field. (b) The energy density. (c) The efficiency of NBT–BM limited solid solution films.

Fig. 6.  

The schematic diagram of polarization states modulated by the lattice engineering: (a), (e), (i), and (m) The crystal structure of the NBT, 0.98NBT–0.02BM solid solution, 0.94NBT–0.06BM at the solubility limit, and 0.94NBT–0.06BM with precipitations, respectively. (b), (f), (j), and (n) The lattices of the NBT, 0.98NBT–0.02BM solid solution, 0.96NBT–0.04BM, and 0.94NBT–0.06BM in two-dimensional {110} crystal plane, respectively. (c), (g), (k), and (o) The schematic diagram of charge displacement for the NBT, 0.98NBT–0.02BM solid solution, 0.96NBT–0.04BM, and 0.94NBT–0.06BM lattices at the Brillouin zone, respectively. (d), (h), (l), and (p). The domain structure diagram of the pure NBT, 0.98NBT–0.02BM solid solution, 0.96NBT–0.04BM, and 0.94NBT–0.06BM, respectively.

[1]
Zhang X, Shen Y, Xu B et al. 2016 Adv. Mater. 28 2055
[2]
Liu C, Li F, Ma L P et al. 2010 Adv. Mater. 22 8
[3]
Zuo Z H, Zhan Q F et al. 2016 Chin. Phys. B 25 087702
[4]
Chu B, Zhou X, Ren K et al. 2006 Science 313 334
[5]
Yao Z. H, Song Z, Hao H et al. 2017 Adv. Mater. 29 1601727
[6]
Pan H, Zheng Y, Shen Y et al. 2017 J. Mater. Chem. A 5 5920
[7]
Wang G, Li J L, Zhang X et al. 2019 Energy Environ. Sci. 12 582
[8]
Cross L E 1987 Ferroelectrics 76 241
[9]
Thomas N W 1990 J. Phys. Chem. Solids. 51 1419
[10]
Chen C W, Xiang Y, Tang L G et al. 2019 Chin. Phys. B 28 127702
[11]
Xu K C, Chen Y 1999 J. Raman Spectrosc. 30 441
[12]
Birks E, Dunce M, Lgnatans R et al. 2016 J. Appl. Phys. 119 074102
[13]
Cui L, Hou Y D, Wang S et al. 2010 J. Appl. Phys. 107 054105
[14]
Guo F, Jiang N, Yang B et al. 2019 Appl. Phys. Lett. 114 253901
[15]
Kishimoto A, Koumoto K, Yanagida H 1989 J. Mater. Sci. 24 698
[16]
Kitanaka Y, Noguchi Y, Miyayama M et al. 2013 Ferroelectric 443 1
[17]
Fokam J M 2008 Commum. Math. Phys. 283 285
[18]
Pra P D, Fischer M, Regoli D 2013 J. Stat. Phy. 152 37
[19]
Kaya S, Chamorro E, Petrov D et al. 2017 Polyhedron 123 411
[20]
Ogihara H, Randall C A, McKinstry T S 2009 J. Am. Ceram. Soc. 92 110
[1] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[2] Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes
Zheng-Hu Zuo(左正笏), Qing-Feng Zhan(詹清峰), Bin Chen(陈斌), Hua-Li Yang(杨华礼), Yi-Wei Liu(刘宜伟), Lu-Ping Liu(刘鲁萍), Ya-Li Xie(谢亚丽), Run-Wei Li(李润伟). Chin. Phys. B, 2016, 25(8): 087702.
[3] A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support
Shen Yang-Wu, Ke De-Ping, Sun Yuan-Zhang, Daniel Kirschen, Wang Yi-Shen, Hu Yuan-Chao. Chin. Phys. B, 2015, 24(7): 070201.
[4] New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries
Mu Lin-Qin, Hu Yong-Sheng, Chen Li-Quan. Chin. Phys. B, 2015, 24(3): 038202.
[5] Elastic, dielectric, and piezoelectric characterization of 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal by Brillouin scattering
Fang Shao-Xi, Tang Dong-Yun, Chen Zhao-Ming, Zhang Hua, Liu Yu-Long. Chin. Phys. B, 2015, 24(2): 027802.
[6] First-principles study of the relaxor ferroelectricity of Ba(Zr, Ti)O3
Yang Li-Juan, Wu Ling-Zhi, Dong Shuai. Chin. Phys. B, 2015, 24(12): 127702.
[7] Novel copper redox-based cathode materials for room-temperature sodium-ion batteries
Xu Shu-Yin, Wu Xiao-Yan, Li Yun-Ming, Hu Yong-Sheng, Chen Li-Quan. Chin. Phys. B, 2014, 23(11): 118202.
[8] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya, Li Yong-Li, Chang Xiao-Yong, Wang Nan. Chin. Phys. B, 2013, 22(9): 098401.
[9] Monte Carlo simulation on dielectric relaxation and dipole cluster state in relaxor ferroelectrics
Zhu Chen, Liu Jun-Ming. Chin. Phys. B, 2010, 19(9): 097702.
No Suggested Reading articles found!