Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 093301    DOI: 10.1088/1674-1056/aba5ff
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures

Xiaobo Tu(涂晓波)1,2, Linsen Wang(王林森)2, Xinhua Qi(齐新华)2, Bo Yan(闫博)2, Jinhe Mu(母金河)2, Shuang Chen(陈爽)2
1 Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2 China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract  The effects of temperature and pressure on laser-induced fluorescence (LIF) of OH are numerically studied under the excitation of A-X (1,0) transition at high pressures. A detailed theoretical analysis is carried out to reveal the physical processes of LIF. It is shown that high pressure LIF measurements get greatly complicated by the variations of pressure- and temperature-dependent parameters, such as Boltzmann fraction, absorption lineshape broadening, central-frequency shifting, and collisional quenching. Operations at high pressures require a careful choice of an excitation line, and the Q1(8) line in the A-X (1,0) band of OH is selected due to its minimum temperature dependence through the calculation of Boltzmann fraction. The absorption spectra of OH become much broader as pressure increases, leading to a smaller overlap integral and thus smaller excitation efficiency. The central-frequency shifting cannot be omitted at high pressures, and should be taken into account when setting the excitation frequency. The fluorescence yield is estimated based on the LASKIN calculation. Finally, OH-LIF measurements were conducted on flat stoichiometric CH4/air flames at high pressures. And both the numerical and experimental results illustrate that the pressure dependence of fluorescence yield is dominated, and the fluorescence yield is approximately inversely proportional to pressure. These results illustrate the physical processes of OH-LIF and provide useful guidelines for high-pressure application of OH-LIF.
Keywords:  laser-induced fluorescence      OH      high pressure      numerical analysis  
Received:  23 April 2020      Revised:  11 July 2020      Published:  05 September 2020
PACS:  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  47.70.Pq (Flames; combustion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51976233 and 91641118).
Corresponding Authors:  Shuang Chen     E-mail:  chenshuang827@gamil.com

Cite this article: 

Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽) Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures 2020 Chin. Phys. B 29 093301

[1] Yang Z, Peng J, Yu X, Sun S, Meng S and Xu H 2016 Spectrosc. Lett. 49 482
[2] Kohse-Höinghaus K 1994 Prog. Energy Combust. Sci. 20 203
[3] Boxx I, Slabaugh C, Kutne P, Lucht R P and Meier W 2015 Proc. Combust. Inst. 35 3793
[4] Zhou B, Brackmann C, Li Z, Aldén M and Bai X 2015 Proc. Combust. Inst. 35 1409
[5] Lv L, Tan J and Zhu J 2017 Acta Astronaut. 139 258
[6] Chan C and Daily J W 2016 Chin. Phys. B 25 060703
[7] Chen S, Su T, Zheng Y, Chen L, Liu T, Li R and Yang F 2016 Chin. Phys. B 25 060703
[8] Matynia A, Idir M, Molet J, Roche C, de Persis S and Pillier L 2012 Appl. Phys. B 108 393
[9] Singla G, Scouflaire P, Rolon C and Candel S 2006 Combust. Flame 144 151
[10] Rahmann U, Bulter A, Lenhard U, Dusing R, Markus D, Brockhinke A and Kohse-Höinghaus K LASKIN – A Simulation Program for Time-Resolved LIF-Spectra, University of Bielefeld, Faculty of Chemistry, Physical Chemistry I, http://pc1.uni-bielefeld.de/~laskin
[11] Li Y and Gupta R 2003 Appl. Opt. 42 2226
[12] Luque J and Crosley D R 1998 J. Chem. Phys. 109 439
[13] Singla G, Scouflaire P, Rolon J C and Candel S 2007 J. Propul. Power 23 593
[14] Gordon I E, Rothman L S, Hill C, Kochanov R V ηl 2017 J. Quantum Spectrosc. Radiat. Transfer 203 3
[15] Goldman A, Schoenfeld W G, Goorvitch D, Chackerian C, Dothe H, Mélen F, Abrams M C and Selby J E A 1998 J. Quantum Spectrosc. Radiat. Transfer 59 453
[16] Davidson D F, Roehrig M, Petersen E L, Di Rosa M D and Hanson R K 1996 J. Quantum Spectrosc. Radiat. Transfer 55 755
[17] Kochanov R V, Gordon I E, Rothman L S, Wcislo P, Hill C and Wilzewski J S 2016 J. Quantum Spectrosc. Radiat. Transfer 177 15
[18] Luque J and Crosley D R LIFBASE: Database and spectral simulation (version 1.5), SRI International Report MP 99-0091999
[19] Goodwin D G, Speth R L, Moffat H K, Weber B W 2018 Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics and transport processes Version 2.4.0.
[20] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Jr V V L, Qin Z GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/
[21] Kienle R, Lee M P and KohseH Inghaus K 1996 Appl. Phys. B 62 583
[22] Yan B, Chen L, Li M, Chen S, Gong C, Yang F, Wu Y, Zhou J and Mu J 2020 Chin. Phys. B 29 024701
[23] Tu X, Liu B, Wang L, Qi X, Yan B, Mu J, Chen S and Qin F 2016 Chin. Phys. B 25 100701
[24] Chen S, Su T, Li Z, Bai H, Yan B and Yang F 2016 Chin. Phys. B 25 100701
[1] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[2] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[3] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[4] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[5] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[6] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[7] Resonance-enhanced two-photon ionization of hydrogen atom in intense laser field investigated by Bohmian-mechanics
Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), Su-Yu Li(李苏宇). Chin. Phys. B, 2020, 29(9): 093204.
[8] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[9] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
[10] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[11] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[12] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[13] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[14] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[15] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
No Suggested Reading articles found!