Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 093301    DOI: 10.1088/1674-1056/aba5ff
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures

Xiaobo Tu(涂晓波)1,2, Linsen Wang(王林森)2, Xinhua Qi(齐新华)2, Bo Yan(闫博)2, Jinhe Mu(母金河)2, Shuang Chen(陈爽)2
1 Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2 China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract  The effects of temperature and pressure on laser-induced fluorescence (LIF) of OH are numerically studied under the excitation of A-X (1,0) transition at high pressures. A detailed theoretical analysis is carried out to reveal the physical processes of LIF. It is shown that high pressure LIF measurements get greatly complicated by the variations of pressure- and temperature-dependent parameters, such as Boltzmann fraction, absorption lineshape broadening, central-frequency shifting, and collisional quenching. Operations at high pressures require a careful choice of an excitation line, and the Q1(8) line in the A-X (1,0) band of OH is selected due to its minimum temperature dependence through the calculation of Boltzmann fraction. The absorption spectra of OH become much broader as pressure increases, leading to a smaller overlap integral and thus smaller excitation efficiency. The central-frequency shifting cannot be omitted at high pressures, and should be taken into account when setting the excitation frequency. The fluorescence yield is estimated based on the LASKIN calculation. Finally, OH-LIF measurements were conducted on flat stoichiometric CH4/air flames at high pressures. And both the numerical and experimental results illustrate that the pressure dependence of fluorescence yield is dominated, and the fluorescence yield is approximately inversely proportional to pressure. These results illustrate the physical processes of OH-LIF and provide useful guidelines for high-pressure application of OH-LIF.
Keywords:  laser-induced fluorescence      OH      high pressure      numerical analysis  
Received:  23 April 2020      Revised:  11 July 2020      Accepted manuscript online:  15 July 2020
PACS:  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  47.70.Pq (Flames; combustion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51976233 and 91641118).
Corresponding Authors:  Shuang Chen     E-mail:  chenshuang827@gamil.com

Cite this article: 

Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽) Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures 2020 Chin. Phys. B 29 093301

[1] Yang Z, Peng J, Yu X, Sun S, Meng S and Xu H 2016 Spectrosc. Lett. 49 482
[2] Kohse-Höinghaus K 1994 Prog. Energy Combust. Sci. 20 203
[3] Boxx I, Slabaugh C, Kutne P, Lucht R P and Meier W 2015 Proc. Combust. Inst. 35 3793
[4] Zhou B, Brackmann C, Li Z, Aldén M and Bai X 2015 Proc. Combust. Inst. 35 1409
[5] Lv L, Tan J and Zhu J 2017 Acta Astronaut. 139 258
[6] Chan C and Daily J W 2016 Chin. Phys. B 25 060703
[7] Chen S, Su T, Zheng Y, Chen L, Liu T, Li R and Yang F 2016 Chin. Phys. B 25 060703
[8] Matynia A, Idir M, Molet J, Roche C, de Persis S and Pillier L 2012 Appl. Phys. B 108 393
[9] Singla G, Scouflaire P, Rolon C and Candel S 2006 Combust. Flame 144 151
[10] Rahmann U, Bulter A, Lenhard U, Dusing R, Markus D, Brockhinke A and Kohse-Höinghaus K LASKIN – A Simulation Program for Time-Resolved LIF-Spectra, University of Bielefeld, Faculty of Chemistry, Physical Chemistry I, http://pc1.uni-bielefeld.de/~laskin
[11] Li Y and Gupta R 2003 Appl. Opt. 42 2226
[12] Luque J and Crosley D R 1998 J. Chem. Phys. 109 439
[13] Singla G, Scouflaire P, Rolon J C and Candel S 2007 J. Propul. Power 23 593
[14] Gordon I E, Rothman L S, Hill C, Kochanov R V ηl 2017 J. Quantum Spectrosc. Radiat. Transfer 203 3
[15] Goldman A, Schoenfeld W G, Goorvitch D, Chackerian C, Dothe H, Mélen F, Abrams M C and Selby J E A 1998 J. Quantum Spectrosc. Radiat. Transfer 59 453
[16] Davidson D F, Roehrig M, Petersen E L, Di Rosa M D and Hanson R K 1996 J. Quantum Spectrosc. Radiat. Transfer 55 755
[17] Kochanov R V, Gordon I E, Rothman L S, Wcislo P, Hill C and Wilzewski J S 2016 J. Quantum Spectrosc. Radiat. Transfer 177 15
[18] Luque J and Crosley D R LIFBASE: Database and spectral simulation (version 1.5), SRI International Report MP 99-0091999
[19] Goodwin D G, Speth R L, Moffat H K, Weber B W 2018 Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics and transport processes Version 2.4.0.
[20] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Jr V V L, Qin Z GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/
[21] Kienle R, Lee M P and KohseH Inghaus K 1996 Appl. Phys. B 62 583
[22] Yan B, Chen L, Li M, Chen S, Gong C, Yang F, Wu Y, Zhou J and Mu J 2020 Chin. Phys. B 29 024701
[23] Tu X, Liu B, Wang L, Qi X, Yan B, Mu J, Chen S and Qin F 2016 Chin. Phys. B 25 100701
[24] Chen S, Su T, Li Z, Bai H, Yan B and Yang F 2016 Chin. Phys. B 25 100701
[1] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[4] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[5] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[6] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[7] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[8] Incoherent digital holographic spectral imaging with high accuracy of image pixel registration
Feng-Ying Ma(马凤英), Xi Wang(王茜), Yuan-Zhuang Bu(卜远壮), Yong-Zhi Tian(田勇志), Yanli Du(杜艳丽) , Qiao-Xia Gong(弓巧侠), Ceyun Zhuang(庄策云), Jinhai Li(李金海), and Lei Li(李磊). Chin. Phys. B, 2021, 30(4): 044202.
[9] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[10] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[11] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[12] Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube
Haiyan Lin(林海燕), Yang Xiang(向阳, Hong Liu(刘洪), and Bin Zhang(张斌). Chin. Phys. B, 2021, 30(3): 030501.
[13] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[14] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[15] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
No Suggested Reading articles found!