Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098801    DOI: 10.1088/1674-1056/aba5fc

Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells

Brahim Ait Ali1,2, Reda Moubah2, Abdelkader Boulezhar1, Hassan Lassri2
1 LERDyS, Faculty of Science Ain Chock, Hassan II University of Casablanca, Morocco;
2 LPMMAT, Faculty of Science Ain Chock, Hassan II University of Casablanca, Morocco
Abstract  We report on the temperature-dependent Schottky barrier in organic solar cells based on PTB7:PC71BM. The ideality factor is found to increase with temperature decreasing, which is explained by a model in which the solar cell is taken as Schottky barrier diode. Accordingly, the dark current in the device originates from the thermally emitted electrons across the Schottky barrier. The fittings obtained with the thermal emission theory are systematically studied at different temperatures. It is concluded that the blend/Ca/Al interface presents great inhomogeneity, which can be described by 2 sets of Gaussian distributions with large zero bias standard deviations. With the decrease of temperature, electrons favor going across the Schottky barrier patches with lower barrier height and as a consequence the ideally factor significantly increases at low temperature.
Keywords:  organic materials      photovoltaics      Schottky barrier      barrier height  
Received:  16 December 2019      Revised:  16 June 2020      Published:  05 September 2020
PACS:  88.40.jr (Organic photovoltaics)  
  78.55.Kz (Solid organic materials)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  33.15.Hp (Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))  
Corresponding Authors:  Reda Moubah     E-mail:

Cite this article: 

Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells 2020 Chin. Phys. B 29 098801

[1] Zhang H, Zhang Q, Zhang Qi, Sun H, Hai G, Tong J, Xu H and Xia R 2019 Chin. Phys. B 28 078108
[2] Qi H X, Yu B H, Liu S, Zhang M, Ma X L, Wang J and Zhang F J 2018 Chin. Phys. B 27 058802
[3] Gao J, Gao W, Ma X, Hu Z, Xu C, Wang X, An Q, Yang C, Zhang X and Zhang F 2020 Energy Environ. Sci. 13 958
[4] Jouane A, Moubah R, Schmerber G, Lardé R and Odarchenko Y 2018 Sol. Energy Mater. Sol. Cells 180 258
[5] El-Menyawy E M 2015 Mater. Sci. Semicond. Proc. 32 145
[6] An Q, Wang J, Gao W, Ma X, Hu Z, Gao J, Xu C, Hao M, Zhang X, Yang C and Zhang F 2020 Sci. Bull. 65 538
[7] Zhong Y, Zhang Q, Wei Y, Li Q and Zhang Y 2018 Chin. Phys. B 27 078802
[8] Jouane A, Moubah R, Lassri H, Saifaoui D, Schmerber G, Jaouani H, Ennamiri H, Chapuis Y A and Jouane Y 2016 Org. Electron. 39 138
[9] Qi B, Zhou Q and Wang J 2015 Sci. Rep. 5 11363
[10] Mao P, Wei Y, Li H and Wang J 2017 Nano Energy 41 717
[11] Du Y Y, Lin D Q, Chen G H, Bai X Y, Wang L X, Wu R, Wang J O, Qian H J and Li H N 2018 Chin. Phys. B 27 088801
[12] Ma X, Wang J, An Q, Gao J, Hu Z, Xu C, Zhang X, Liu Z and Zhang F 2020 Nano Energy 70 104496
[13] Zhang R C, Wang M Y, Yang L Y, Qin W J and Yin S G 2015 Chin. Phys. Lett. 32 077202
[14] Ebenhoch B, Thomson Stuart A J, Genevičius K, Juška G and Samuel I D W 2015 Org. Electron. 22 62
[15] Hu Z, Wang Z, An Q and Zhang F 2020 Sci. Bull. 65 131
[16] Campbell A J, Bradley D D C and Lidzey D G 1997 J. Appl. Phys. 82 6326
[17] Ait Ali B, Moubah R, Boulezhar A, Shi S and Lassri H 2020 Trans. Electr. Electron. Mater. 21 436
[18] Biring S, Sung Y M, Nguyen T P, Li Y Z, Lee C C, Chan A H Y, Pal B, Sen S, Liu S W and Wong K T 2019 Org. Electron. 73 166
[19] Servaites J D, Ratner M A and Marks T J 2011 Energ. Environ. Sci. 4 4410
[20] Noh S, Suman C K, Lee D, Kim S and Lee C 2010 J. Nanosci. Nanotechnol. 10 6815
[21] Yuan H, Song K W, Han C, Tang X Y, He X N, Zhang Y M and Zhang Y M 2019 Chin. Phys. B 28 117303
[22] Breitenstein O, Altermatt P, Ramspeck K and Schenk A 2006 Proceedings of the 21st European Photovoltaic Solar Energy Conference, September, 2006, pp. 625-628
[23] Qi B and Wang J 2013 Phys. Chem. Chem. Phys. 15 8972
[24] Chen G, Si C, Tang Z, Guo K, Wang T, Zhang J and Wei B 2016 Synth. Met. 222 293
[25] Chen G, Wang T, Li C, Yang L, Xu T, Zhu W, Gao Y and Wei B 2016 Org. Electron. 36 50
[26] Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C J 2006 Adv. Mater. 18 789
[27] Oseni S O and Mola G T 2017 Sol. Energy 150 66
[28] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[29] Cowan S R, Roy A and Heeger A J 2010 Phys. Rev. B 82 245207
[30] Alsharari A M, Qashou S I, Darwich A A A and El-Nahass M M 2020 Thin Solid Films 704 137977
[31] Darwish A A A, El-Shazly E A A, Attia A A and Abd El-Rahman K F 2016 J. Mater. Sci.: Mater. Electron. 27 8786
[32] Card H C and Rhoderick E H 1971 J. Phys. D: Appl. Phys. 4 1589
[33] Dogan H and Elagoz S 2014 Physica E: Low Dimens. Syst. Nanostruct. 63 186
[34] Li J L, Li Y, Wang L, Xu Y, Yan F, Han P and Ji X L 2019 Chin. Phys. B 28 027303
[35] Li H, He D, Zhou Q, Mao P, Cao J, Ding L and Wang J 2017 Sci. Rep. 7 40134
[36] Werner J H and Güttler H H 1991 J. Appl. Phys. 69 1522
[37] Janardhanam V, Jyothi I, Ahn K S and Choi C J 2013 Thin Solid Films 546 63
[38] Sullivan J P, Tung R T and Pinto M R 1991 J. Appl. Phys. 70 7403
[39] Altuntaş H, Altindal S, Shtrikman H and Özçlik S 2009 Microelectron. Reliab. 49 904
[40] Von Wenckstern H, Biehne G, Abdel Rahman R, Hochmuth H, Lorenz M and Grundmann M 2006 Appl. Phys. Lett. 88 92102
[41] Song Y P, Meirhaeghe Van R L, Laflére W H and Cardon F 1986 Solid State Electron. 29 633
[42] Chand S and Bala S 2005 Appl. Surf. Sci. 252 358
[1] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[2] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[3] Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure
Lu-Wei Qi(祁路伟), Xiao-Yu Liu(刘晓宇), Jin Meng(孟进), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛). Chin. Phys. B, 2020, 29(5): 057306.
[4] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[5] Optimization of terahertz monolithic integrated frequency multiplier based on trap-assisted physics model of THz Schottky barrier varactor
Lu-Wei Qi(祁路伟), Jin Meng(孟进), Xiao-Yu Liu(刘晓宇), Yi Weng(翁祎), Zhi-Cheng Liu(刘志成), De-Hai Zhang(张德海)†, Jing-Tao Zhou(周静涛)‡, and Zhi Jin(金智). Chin. Phys. B, 2020, 29(10): 104212.
[6] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[7] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[8] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[9] Review of gallium oxide based field-effect transistors and Schottky barrier diodes
Zeng Liu(刘增), Pei-Gang Li(李培刚), Yu-Song Zhi(支钰崧), Xiao-Long Wang(王小龙), Xu-Long Chu(褚旭龙), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(1): 017105.
[10] Modeling capacitance–voltage characteristic of TiW/p-InP Schottky barrier diode
Yi-Dong Wang(王一栋), Jun Chen(陈俊). Chin. Phys. B, 2018, 27(9): 097203.
[11] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[12] Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices
Guo-Cai Wang(王国才), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Zhang Zhou(周璋), Rui-Song Ma(马瑞松), Hai-Fang Yang(杨海方), Jun-Jie Li(李俊杰), Chang-Zhi Gu(顾长志), Li-Hong Bao(鲍丽宏), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077303.
[13] A simulation study of field plate termination in Ga2O3 Schottky barrier diodes
Hui Wang(王辉), Ling-Li Jiang(蒋苓利), Xin-Peng Lin(林新鹏), Si-Qi Lei(雷思琦), Hong-Yu Yu(于洪宇). Chin. Phys. B, 2018, 27(12): 127302.
[14] A simulation study on p-doping level of polymer host material in P3HT: PCBM bulk heterojunction solar cells
Hossein Movla, Mohammad Babazadeh. Chin. Phys. B, 2017, 26(4): 048802.
[15] Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory
Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国). Chin. Phys. B, 2017, 26(12): 127101.
No Suggested Reading articles found!