Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 090303    DOI: 10.1088/1674-1056/aba5fb
GENERAL Prev   Next  

Quantum noise of a harmonic oscillator under classical feedback control

Feng Tang(汤丰), Nan Zhao(赵楠)
Beijing Computational Science Research Center, Beijing 100193, China
Abstract  Quantum sensing has been receiving researcher's attention these years due to its ultrahigh sensitivity and precision. However, the bandwidth of the sensors may be low, thus limiting the scope of their practical applications. The low-bandwidth problem is conquered by feedback control methods, which are widely utilized in classic control fields. Based on a quantum harmonic oscillator model operating near the resonant point, the bandwidth and sensitivity of the quantum sensor are analyzed. The results give two important conclusions: (a) the bandwidth and sensitivity are two incompatible performance parameters of the sensor, so there must be a trade-off between bandwidth and sensitivity in practical applications; (b) the quantum white noise affects the signal to be detected in a non-white form due to the feedback control.
Keywords:  quantum sensing      feedback      sensitivity      bandwidth  
Received:  06 April 2020      Revised:  25 June 2020      Accepted manuscript online:  15 July 2020
PACS:  03.67.-a (Quantum information)  
  87.19.lr (Control theory and feedback)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11534002, U1930402, and U1930403).
Corresponding Authors:  Nan Zhao     E-mail:  nzhao@csrc.ac.cn

Cite this article: 

Feng Tang(汤丰), Nan Zhao(赵楠) Quantum noise of a harmonic oscillator under classical feedback control 2020 Chin. Phys. B 29 090303

[1] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[2] Kominis I, Kornac T, Allred J and Romalis M V 2003 Nature 422 596
[3] Savukov I M, Seltzer S J, Romalis M V and Sauer K L 2005 Phys. Rev. Lett. 95 063004
[4] Budker D and Kimball D F J 2013 Optical Magnetometry (Cambridge: Cambridge University Press)
[5] Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G and Wineland D J 2009 Nat. Phys. 5 551
[6] Biercuk M J, Uys H, Britton J W, VanDevender A P and Bollinger J J 2010 Nat. Nanotechnol. 5 646
[7] Brownnutt M, Kumph M, Rabl P and Blatt R 2015 Rev. Mod. Phys. 87 1419
[8] Balasubramanian G, Chan I Y, Kolesov R et al. 2008 Nature 455 648
[9] Taylor J, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P, Yacoby A, Walsworth R and Lukin M 2008 Nat. Phys. 4 810
[10] Ledbetter M P, Jensen K, Fischer R, Jarmola A and Budker D 2012 Phys. Rev. A 86 052116
[11] Wolf T, Neumann P, Nakamura K, Sumiya H, Ohshima T, Isoya J and Wrachtrup J 2015 Phys. Rev. X 5 041001
[12] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[13] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476
[14] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[15] Caves C M 1981 Phys. Rev. D 23 1693
[16] Schnabel R, Mavalvala N, McClelland D E and Lam P K 2010 Nat. Commun. 1 121
[17] Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Adams C, Adhikari R, Akeldt C, Allen B, Allen G et al. 2011 Nat. Phys. 7 962
[18] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[19] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[20] Ogata K 2009 Modern Control Engineering (Upper Saddle River NJ: Prentice Hall)
[21] Davenport W B, Root W L et al. 1958 An introduction to the Theory of Random Signals and Noise (New York: McGraw-Hill) Vol. 159
[1] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[2] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[3] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[4] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[5] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[6] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[7] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[8] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[9] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
[10] A 795 nm gain coupled distributed feedback semiconductor laser based on tilted waveguides
De-Zheng Ma(马德正), Yong-Yi Chen(陈泳屹), Yu-Xin Lei(雷宇鑫), Peng Jia(贾鹏), Feng Gao(高峰), Yu-Gang Zeng(曾玉刚), Lei Liang(梁磊), Yue Song(宋悦), Chun-Kao Ruan(阮春烤), Xia Liu(刘夏), Li Qin(秦莉), Yong-Qiang Ning(宁永强), and Li-Jun Wang(王立军). Chin. Phys. B, 2021, 30(5): 050505.
[11] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[12] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[13] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[14] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[15] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
No Suggested Reading articles found!