Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117301    DOI: 10.1088/1674-1056/aba2e0

Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode

Jia-Feng Liu(刘家丰)1,2, †, Ning-Tao Zhang(张宁涛)4, †, Yan Teng(滕)1,2, Xiu-Jun Hao(郝修军)2,3, Yu Zhao(赵宇)2, Ying Chen(陈影)1,2, He Zhu(朱赫)1,2, Hong Zhu(朱虹)1,2, Qi-Hua Wu(吴启花)2, Xin Li(李欣)2, Bai-Le Chen(陈佰乐)4,§, and Yong Huang(黄勇)1,2,, ‡
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
2 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition. The difference between the two devices, namely, p+nn+ and p+nnn+, is that the p+nnn+ device possesses an additional middle-doped layer to separate the multiplication region from the absorption region. By properly controlling the electric field distribution in the p+nnn+ device, an electric field of 906 kV/cm has been achieved, which is 2.6 times higher than that in the p+nn+ device. At a reverse bias of –0.1 V at 77 K, both devices show a 100% cut-off wavelength of 2.25 μm. The p+nn+ and p+nnn+ show a dark current density of 1.5 × 10−7 A/cm2 and 1.8 × 10−8 A/cm2, and a peak responsivity about 0.35 A/W and 0.40 A/W at 1.5 μm, respectively. A maximum multiplication gain of 55 is achieved in the p+nnn+ device while the value is only less than 2 in the p+nn+ device. Exponential nature of the gain characteristic as a function of reverse bias confirms a single carrier hole dominated impact ionization.

Keywords:  short-wavelength infrared      InAs/GaSb superlattice      avalanche photodiodes      metal-organic chemical vapor deposition  
Received:  13 May 2020      Revised:  19 June 2020      Published:  03 November 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 61874179, 61804161, and 61975121) and the National Key Research and Development Program of China (Grant No. 2019YFB2203400).
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: §Corresponding author. E-mail:   

Cite this article: 

Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇) Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode 2020 Chin. Phys. B 29 117301

Fig. 1.  

The schematic cross-section of (a) p+nn+ device and (b) p+nnn+ device. (c) Simulation of electric field distribution and intensity of corresponding two devices.

Fig. 2.  

The dark current density as a function of applied bias for the p+nn+ and p+nnn+ devices measured under 77 K.

Fig. 3.  

The comparison of (a) spectral responsivity and (b) quantum efficiency for p+nn+ and p+nnn+ devices.

Fig. 4.  

Total current with illumination, dark current, and corresponding multiplication gain vs. applied reverse bias for the (a) p+nn+ device, and (b) p+nnn+ device at 77 K.

Nguyen B M, Chen G X, Hoang M A, Razeghi M 2011 IEEE J. Quantum. Elect. 47 686 DOI: 10.1109/JQE.2010.2103049
Smith D L, Mailhiot C 1987 J. Appl. Phys. 62 2545 DOI: 10.1063/1.339468
Rogalski A, Martyniuk P 2006 Infrared. Phys. Techn. 48 39 DOI: 10.1016/j.infrared.2005.01.003
Banerjee K, Mallick S, Ghosh S, Plis E, Rodriguez J B, Krishna S, Grein C 2008 Mater. Res. Soc. Proc. 1076 1076-K02 DOI: 10.1557/PROC-1076-K02-02
Mallick S, Banerjee K, Ghosh S, Plis E, Rodriguez J B, Krishna S, Grein C 2007 Appl. Phys. Lett. 91 241111 DOI: 10.1063/1.2817608
Banerjee K, Ghosh S, Mallick S, Plis E, Krishna S, Grein C 2009 Appl. Phys. Lett. 94 201107 DOI: 10.1063/1.3139012
Nishida K, Taguchi K, Matsumoto Y 1979 Appl. Phys. Lett. 35 251 DOI: 10.1063/1.91089
David J P R, Tan C H 2008 IEEE J. Sel. Top. Quantum Electron. 14 998 DOI: 10.1109/JSTQE.2008.918313
Hoffman D, Nguyen B M, Delaunay P Y, Hood A, Razeghi M, Pellegrino J 2007 Appl. Phys. Lett. 91 143507 DOI: 10.1063/1.2795086
Yang Q K, Fuchs F, Schmitz J, Pletschen W 2002 Appl. Phys. Lett. 81 4757 DOI: 10.1063/1.1529306
Li X, Zhao Y, Wu Q H, Teng Y, Hao X J, Huang Y 2018 J. Cryst. Growth. 502 71 DOI: 10.1016/j.jcrysgro.2018.09.003
Chen Y, Liu J F, Zhao Y, Teng Y, Hao X J, Li X, Zhu H, Zhu H, Wu Q H, Huang Y 2020 Infrared. Phys. Techn. 105 103209 DOI: 10.1016/j.infrared.2020.103209
Kinch M A, Beck J D, Wan C F, Ma F, Campbell J 2004 J. Electron. Mater. 33 630 DOI: 10.1007/s11664-004-0058-1
Beck J, Wan C, Kinch M, Robinson J, Mitra P, Scritchfield R, Ma F, Campbell J 2006 J. Electron. Mater. 35 1166 DOI: 10.1007/s11664-006-0237-3
Ghosh S, Mallick S, Banerjee K, Grein C, Velicu S, Zhao J, Silversmith D, Rodriguez J B, Plis E, Krishna S 2008 J. Electron. Mater. 37 1764 DOI: 10.1007/s11664-008-0542-0
[1] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[2] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[3] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[4] Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array
Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(4): 047303.
[5] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie, Li Ming, Zhao Qian, Gu Wen-Wen, Lau Kei-May. Chin. Phys. B, 2015, 24(8): 087305.
[6] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie, Li Ming, Lau Kei-May. Chin. Phys. B, 2015, 24(7): 078102.
[7] Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates
Liu Jian-Ming, Zhang Jie, Lin Wen-Yu, Ye Meng-Xin, Feng Xiang-Xu, Zhang Dong-Yan, Steve Ding, Xu Chen-Ke, Liu Bao-Lin. Chin. Phys. B, 2015, 24(5): 057801.
[8] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai, Liu Ren-Jun, Lü You, Yang Hao-Yu, Li Guo-Xing, Zhang Yuan-Tao, Zhang Bao-Lin. Chin. Phys. B, 2015, 24(1): 018102.
[9] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Zhao Yi, Xue Jun-Shuai, Ha Wei, Zhang Shuai, Cui Pei-Shui, Wen Hui-Juan, Chen Xing. Chin. Phys. B, 2014, 23(4): 047804.
[10] Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal-organic chemical vapor deposition
Xing Hai-Ying, Xu Zhang-Cheng, Cui Ming-Qi, Xie Yu-Xin, Zhang Guo-Yi. Chin. Phys. B, 2014, 23(10): 107803.
[11] Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content
Zhao Bi-Jun, Chen Xin, Ren Zhi-Wei, Tong Jin-Hui, Wang Xing-Fu, Li Dan-Wei, Zhuo Xiang-Jing, Zhang Jun, Yi Han-Xiang, Li Shu-Ti. Chin. Phys. B, 2013, 22(8): 088401.
[12] Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces
Lü Xiao-Long, Zhang Xia, Liu Xiao-Long, Yan Xin, Cui Jian-Gong, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Chin. Phys. B, 2013, 22(6): 066101.
[13] Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering
Wang Dang-Hui, Xu Sheng-Rui, Hao Yue, Zhang Jin-Cheng, Xu Tian-Han, Lin Zhi-Yu, Zhou Hao, Xue Xiao-Yong. Chin. Phys. B, 2013, 22(2): 028101.
[14] Effect of compensation doping on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattice photodetectors
Wang Yong-Bin, Xu Yun, Zhang Yu, Yu Xiu, Song Guo-Feng, Chen Liang-Hui. Chin. Phys. B, 2011, 20(6): 067302.
[15] Growth and properties of wide spectral white light emitting diodes
Xie Zi-Li, Zhang Rong, Fu De-Yi, Liu Bin, Xiu Xiang-Qian, Hua Xue-Mei, Zhao Hong, Chen Peng, Han Ping, Shi Yi, Zheng You-Dou. Chin. Phys. B, 2011, 20(11): 116801.
No Suggested Reading articles found!