Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096802    DOI: 10.1088/1674-1056/aba09b

Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film

Zhi-Bin Ling(令志斌)1, Qing-Ye Zhang(张庆业)1, Cheng-Peng Yang(杨成鹏)1, Xiao-Tian Li(李晓天)1, Wen-Shuang Liang(梁文双)1, Yi-Qian Wang(王乙潜)1, Huai-Wen Yang(杨怀文)2, Ji-Rong Sun(孙继荣)2
1 College of Physics & State Key Laboratory, Qingdao University, Qingdao 266071, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper, we investigate the effects of lattice strain on the electrical and magnetotransport properties of La0.7Sr0.3MnO3 (LSMO) films by changing film thickness and substrate. For electrical properties, a resistivity upturn emerges in LSMO films, i.e., LSMO/STO and LSMO/LSAT with small lattice strain at a low temperature, which originates from the weak localization effect. Increasing film thickness weakens the weak localization effect, resulting in the disappearance of resistivity upturn. While in LSMO films with a large lattice strain (i.e., LSMO/LAO), an unexpected semiconductor behavior is observed due to the linear defects. For magnetotransport properties, an anomalous in-plane magnetoresistance peak (pMR) occurs at low temperatures in LSMO films with small lattice strain, which is caused by two-dimensional electron gas (2DEG). Increasing film thickness suppresses the 2DEG, which weakens the pMR. Besides, it is found that the film orientation has no influence on the formation of 2DEG. While in LSMO/LAO films, the 2DEG cannot form due to the existence of linear defects. This work can provide an efficient way to regulate the film transport properties.
Keywords:  LSMO film      lattice strain      electrical transport      magnetotransport  
Received:  09 May 2019      Revised:  03 June 2020      Accepted manuscript online:  29 June 2020
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974105), the Double-Hundred Talent Plan, Shandong Province, China (Grant No. WST2018006), the Recruitment Program of High-end Foreign Experts, China (Grant Nos. GDW20163500110 and GDW20173500154), and the Top-notch Innovative Talent Program of Qingdao City, China (Grant No. 13-CX-8). One of the authors (Yi-Qian Wang) was sponsored by the Taishan Scholar Program of Shandong Province, China, the Qingdao International Center for Semiconductor Photoelectric Nanomaterials, China, and Shandong Provincial University Key Laboratory of Optoelectrical Material Physics and Devices, China.
Corresponding Authors:  Yi-Qian Wang     E-mail:

Cite this article: 

Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣) Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film 2020 Chin. Phys. B 29 096802

[1] Wang L M and Guo C C 2005 Appl. Phys. Lett. 87 172503
[2] Dey P, Nath T K and Taraphder A 2007 Appl. Phys. Lett. 91 012511
[3] Malisa A and Ivanov Z 2005 J. Magn. Magn. Mater. 295 277
[4] Lee H S, Choi S G, Park H H and Rozenberg M J 2013 Sci. Rep. 3 1704
[5] Sharma H, Tulapurkar A and Tomy C V 2014 Appl. Phys. Lett. 105 222406
[6] Ling Z B, Liu G J, Yang C P, Liang W S and Wang Y Q 2019 Chin. Phys. B 28 046101
[7] Zener C 1951 Phys. Rev. 82 403
[8] Takamura Y, Chopdekar R V, Arenholz E and Suzuki Y 2008 Appl. Phys. Lett. 92 162504
[9] Cui B, Song C, Gehring G A, Li F, Wang G, Chen C and Pan F 2015 Adv. Funct. Mater. 25 864
[10] Tsui F, Smoak M C, Nath T K and Eom C B 2000 Appl. Phys. Lett. 76 2421
[11] Sirena M, Steren L and Guimpel J 2000 Thin Solid Films 373 102
[12] Yang S Y, Kuang W L, Liou Y, Tse W S, Lee S F and Yao Y D 2004 J. Magn. Magn. Mater. 268 326
[13] Maritato L, Adamo C, Barone C, De Luca G M, Galdi A, Orgiani P and Petrov A Y 2006 Phys. Rev. B 73 094456
[14] Kondo J 1964 Prog. Theor. Phys. 32 37
[15] Rozenberg E, Auslender M, Felner I and Gorodetsky G 2000 J. Appl. Phys. 88 2578
[16] Niu W, Gao M, Wang X F, Song F Q, Du J, Wang X R, Xu Y B and Zhang R 2016 Sci. Rep. 6 26081
[17] Zhang Y, Gan Y L, Niu W, Norrman K, Yan X, Christensen D V, von Soosten M, Zhang H R, Shen B G, Pryds N, Sun J R and Chen Y Z 2018 ACS Appl. Mater. Inter. 10 1434
[18] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[19] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[20] Liu B, Wang Y Q, Liu G J, Feng H L, Yang H W and Sun J R 2016 J. Appl. Phys. 120 154103
[21] Bergmann G 1984 Phys. Rep. 107 1
[22] Shalom M B, Tai C W, Lereah Y, Sachs M, Levy E, Rakhmilevitch D, Palevski A and Dagan Y 2009 Phys. Rev. B 80 140403
[23] Li X T, Liu B, Wang Y Q, Xue X Y, Liu G J, Yang H W and Sun J R 2018 J. Am. Ceram. Soc. 101 2339
[1] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[2] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[3] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[4] Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure
Bowen Zhang(张博文), Chao An(安超), Yonghui Zhou(周永惠), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2019, 28(12): 126202.
[5] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[6] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[7] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[8] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[9] Electrical transport properties of YCo1-xMnxO3 (0≤ x ≤ 0.2) prepared by sol-gel process
Liu Yi, Li Hai-Jin. Chin. Phys. B, 2015, 24(4): 047202.
[10] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi, Liu Jian, Wang Chun-Lei, Su Wen-Bin, Zhu Yuan-Hu, Li Ji-Chao, Mei Liang-Mo. Chin. Phys. B, 2015, 24(4): 047201.
[11] In situ electrical transport measurement of superconductive ultrathin films
Liu Can-Hua, Jia Jin-Feng. Chin. Phys. B, 2015, 24(11): 110702.
[12] Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-xNixO3 (0≤ x ≤0.07) prepared by sol-gel process
Liu Yi, Li Hai-Jin, Zhang Qing, Li Yong, Liu Hou-Tong. Chin. Phys. B, 2013, 22(5): 057201.
[13] Emergent phenomena in manganites under spatial confinement
Shen Jian, T. Z. Ward, L. F. Yin. Chin. Phys. B, 2013, 22(1): 017501.
[14] Static strength of gold compressed up to 127 GPa
Jing Qiu-Min, Wu Qiang, Liu Lei, Bi Yan, Zhang Yi, Liu Sheng-Gang, Xu Ji-An. Chin. Phys. B, 2012, 21(10): 106201.
[15] Magnetotransport properties of two-dimensional electron gas in AlGaN/AlN/GaN heterostructures
Ma Xiao-Hua, Ma Ping, Jiao Ying, Yang Li-Yuan, Ma Ji-Gang, He Qiang, Jiao Sha-Sha, Zhang Jin-Cheng, Hao Yue. Chin. Phys. B, 2011, 20(9): 097302.
No Suggested Reading articles found!