Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097405    DOI: 10.1088/1674-1056/ab9f26
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry

Ya-Lei Huang(黄亚磊)1,2, Run Yang(杨润)3, Pei-Gang Li(李培刚)1,4, Hong Xiao(肖宏)2
1 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China;
3 Laboratorium für Festkörperphysik, ETH-Zürich, 8093, Zürich, Switzerland;
4 Department of Physics, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Torque measurements were performed on single crystal samples of Ca0.73La0.27(Fe0.96Co0.04)As2 in both the normal and superconducting states. Contributions to the torque signal from the paramagnetism and the vortex lattice were identified. The superconducting anisotropy parameter γ was determined from the reversible part of the vortex contribution based on Kogan's model. It is found that γ ≈ 7.5 at t=T/Tc=0.85, which is smaller than the result of CaFe0.88Co0.12AsF γ ≈ 15 at t=0.83, but larger than the result of 11 and 122 families, where γ stays in the range of 2-3. The moderate anisotropy of this 112 iron-based superconductor fills the gap between 11, 122 families and 1111 families. In addition, we found that the γ shows a temperature dependent behavior, i.e., decreasing with increasing temperature. The fact that γ is not a constant point towards a multiband scenario in this compound.
Keywords:  torque      anisotropy parameter      superconductivity  
Received:  06 June 2020      Revised:  12 June 2020      Published:  05 September 2020
PACS:  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.70.Xa (Pnictides and chalcogenides)  
Fund: Project supported by NSAF, China (Grant No. U1530402). P. G. Li acknowledges the support of the National Natural Science Foundation of China (Grant No. 51572241).
Corresponding Authors:  Pei-Gang Li, Hong Xiao     E-mail:  pgli@bupt.edu.cn;hong.xiao@hpstar.ac.cn

Cite this article: 

Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏) Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry 2020 Chin. Phys. B 29 097405

[1] Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
[2] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[3] Fujioka M, Denholme S J, Tanaka M, Hiroyuki Takeya, Takahide Y and Yoshihiko T 2014 Appl. Phys. Lett. 105 102602
[4] Wang R, Li D P 2016 Chin. Phys. B 25 097401
[5] Tapp J H, Tang Z, Lv B, Kalyan S, Bernd L, Chu C W and Guloy M 2008 Phys. Rev. B 78 060505
[6] Zhu J, Wang Z S, Wang Z Y, Hou X Y, Luo H Q, Lu X Y, Li C H, Shan L, Wen H H, Ren C 2015 Chin. Phys. Lett. 32 77401
[7] Kawasaki S, Mabuchi T, Maeda S, Tomoki Adachi, Mizukami T, Kudo K, Nohara M and Zheng G Q 2015 Phys. Rev. B 92 180508
[8] Xie T, Gong D L, Zhang W L, Gu Y H, Hüsges Z, Chen D F, Liu Y T, Hao L J, Meng S Q, Lu Z L, Li S L and Luo H Q 2017 Supercond. Sci. Technol. 30 095002
[9] Zhou W, Ke F, Xu X, Sankar, Xing X, Xu C Q, Jiang X F, Qian B, Zhou N, Zhang Y, Xu M, Li B, Chen Band Shi Z X 2017 Phys. Rev. B 96 184503
[10] Xing X Z, Li Z F, Veshchunov I, Yi X L, Meng Y, Li M, Lin B C, Tamegai T and Shi Z X 2019 New J. Phys. 21 093015
[11] Zhou W, Zhuang J, Yuan F, Li X, Xing X Z, Sun Y and Shi Z X 2014 Appl. Phys. Express 7 063102
[12] Xing X, Zhou W, Zhou N, Yuan F F, Pan Y Q, Zhao H J, Xu X F and Shi Z X 2016 Supercond. Sci. Tech. 29 055005
[13] Takahashi K, Atsumi T, Yamamoto N, Xu M X, Hideaki K and Takekazu I 2002 Phys. Rev. B 66 012501
[14] Kortyka A, Puzniak R Wisniewski A, Zehetmayer M, Weber H W, Cai Y Q and Yao X 2010 Supercond. Sci. Tech. 23 065001
[15] Kogan V G 1988 Phys. Rev. B 38 7049
[16] Xiao H, Gao B, Ma Y H, Li X J, Mu G and Hu T 2016 J. Phys.: Condens. Matter 28 325701
[17] Yu A B, Wang T Wu Y F, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505
[18] Xiao H, Hu T, Zhou H J, Li X J, Ni S L, Zhou F and Dong X L 2020 Phys. Rev. B 101 184520
[19] Xiao H, Hu T, Almasan C C, Sayles T A and Maple M B 2006 Phys. Rev. B 73 184511
[20] Li G, Grissonnanche G, Gurevich A, Zhigadlo N D, Katrych S, Bukowski Z, Karpinski J and Balicas L 2011 Phys. Rev. B 83 214505
[21] Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H and Matsuda Y 2012 Nature 486 382
[22] Bergemann C, Tyler A W, Mackenzie A P, Cooper J R, Julian S R and Farrell D E 1998 Phys. Rev. B 57 14387
[23] Angst M, Puzniak R, Wisniewski A, Jun J, Kazakov S M, Karpinski J, Roos J and Keller H 2002 Phys. Rev. Lett. 88 167004
[24] Khasanov R and Guguchia Z 2015 Supercond. Sci. Tech. 28 034003
[25] Weyeneth S, Puzniak R, Mosele U, Zhigadlo N D, Katrych S, Bukowski Z, Karpinski J, Kohout S, Roos J and Keller H 2009 J. Supercond. Nov. Magn. 22 325
[26] Jiang, S, Liu, L, Schütt, M, Hallas, Hallas M, Shen B, Tian W, Emmanouilidou E, Shi A S, Luke M, Yasutomo J U, Fernandes R M and Ni N 2016 Phys. Rev. B 93 174513
[27] Bendele M, Weyeneth S, Puzniak R, Maisuradze A, Pomjakushina E, Conder K, Pomjakushin V, Luetkens H, Katrych S, Wisniewski A, Khasanov R and Keller H 2010 Phys. Rev. B 81 224520
[28] Zhou W, Xing X Z, Wu W J, Zhao H J and Shi Z X 2016 Sci. Rep. 6 22278
[29] Prozorov R, Ni N, Tanatar M A, Kogan V G, Gordon R T, Martin C, Blomberg E C, Prommapan P, Yan J Q, Budko S L and Canfield P C 2008 Phys. Rev. B 78 224506
[30] Xing X, Zhou W, Wang J, Feng J J, Xu C Q, Zhou N, Meng Y, Zhang Y F, Pan Y Q, Qin L Y, Zhou W, Zhao H J and X1 Z 2017 Sci. Rep. 7 45943
[31] Xiao H, Hu T, Almasan C C, Sayles T A and Maple M B 2008 Phys. Rev. B 78 014510
[32] Xing X Z, Li Z F, Yi X L, et al. 2018 Sci. Chin. Phys. Mech. Astron. 61 127406
[33] Fletcher J D, Carrington A, Taylor O J, Kazakov S M and Karpinski J 2005 Phys. Rev. Lett. 95 097005
[34] Martin C, Tillman M E, Kim H, Roos J, Keller H, Miranovic P, Jun J, Kazakov S M and Karpinski J 2009 Phys. Rev. Lett. 102 247002
[1] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[2] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[3] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[4] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[5] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn 2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[6] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[7] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[8] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[9] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[10] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[11] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[12] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[13] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[14] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[15] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
No Suggested Reading articles found!