Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107303    DOI: 10.1088/1674-1056/ab9def

Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media

Xiu Yang(杨秀)1, Tao Wei(魏涛)2, Feiliang Chen(陈飞良)3, Fuhua Gao(高福华)1,4, Jinglei Du(杜惊雷)1,4,†, and Yidong Hou(侯宜栋)1,
1 College of Physics, Sichuan University, Chengdu 610065, China
2 School of Medical Information Engineering, Jining Medical University, Jining 272067, China
3 Microsystem & Terahertz Research Center of CAEP, China Academy of Engineering Physics, Chengdu 610299, China
4 High Energy Density Physics of the Ministry of Education Key Laboratory, Sichuan University, Chengdu 610064, China

The strong chiroptical effect is highly desirable and has a wide range of applications in biosensing, chiral catalysis, polarization tuning, and chiral photo detection. In this work, we find a simple method to enhance the reflection circular dichroism (CDR) by placing the planar anisotropic chiral metamaterials (i.e., Z-shaped PACMs) on the interface of two media (i.e., Z-PCMI) with a large refractive index difference. The maximum reflection CDR from the complex system can reach about 0.840 when the refractive index is set as ntop = 4.0 and nbottom = 1.49, which is approximately three times larger than that of placing the Z-shaped PACMs directly on the substrate (i.e., Z-PCMS). While the minimum reflection CDR is 0.157 when the refractive index is set as nbottom = 1.49. So we can get a large available range of reflection CDR from –0.840 to –0.157. Meanwhile, the transmission CDT remains unchanged with the refractive index ntop increment. Our in-depth research indicates that the large reflection CDR is derived from the difference of non-conversion components of the planar anisotropic chiral metamaterials’ reflection matrices. In short, we provide a simple and practical method to enhance the chiroptical effect by changing the refractive index difference between two media without having to design a complex chiral structure.

Keywords:  chiroptical effect      chiral metamaterials      refractive index  
Received:  06 April 2020      Revised:  05 June 2020      Accepted manuscript online:  18 June 2020
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  42.25.-p (Wave optics)  
Corresponding Authors:  Corresponding author. E-mail:第一通讯作者 Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
‡Corresponding author. E-mail:
* Project supported by the National Natural Science Foundation of China (Grant No. 11604227).

Cite this article: 

Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡ Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media 2020 Chin. Phys. B 29 107303

Fig. 1.  

Simulated reflection intensities of the Z-PCMI and Z-PCMS. (a) Schematic diagram of the Z-PCMI. The structure parameters are set as w1 = 115 nm, w2 = 85 nm, L1 = 125 nm, L2 = 105 nm, Px = 235 nm, and Py = 335 nm. The thickness h of the Z-shaped PACMs is 40 nm. (b) Schematic diagram of the Z-PCMS. (c)–(f) The simulated reflection intensities and CDR of the Z-PCMI and Z-PCMS, respectively.

Fig. 2.  

The distribution of the electric field of the (a), (b) Z-PCMI and (c), (d) Z-PCMS at the resonant wavelengths of 1582 nm and 578 nm under the illumination of LCP and RCP.

Fig. 3.  

The charge distribution of the (a), (b) Z-PCMI and (c), (d) Z-PCMS at the resonant wavelengths of 1582 nm and 578 nm under the illumination of the LCP and RCP.

Fig. 4.  

The influence of the refractive index ntop on CD peaks. (a), (b) The reflection CDR and transmission CDT intensities of the Z-PCMI for the light illuminating along –Z direction. (c), (d) The reflection CDR and transmission CDT intensities of the Z-PCMI for the light illuminating along +Z direction.

Fig. 5.  

(a), (c), (e) The reflection intensities and (b), (d), (f) transmission intensities of the Z-PCMI. The reflection and transmission intensities are obtained for the light illuminating along –Z direction.

Fig. 6.  

The dispersion relation of the off-diagonal elements (rxy and ryx) of the linear reflection coefficients. (a)–(c) The linear polarization light illuminates the Z-PCMI along –Z direction. (d)–(f) The linear polarization light illuminates the Z-PCMI along +Z direction.

Fig. 7.  

The reflection intensities of the G-PCMI and 卍-PCMI. (a) Schematic diagram of the G-PCMI, the structure parameters are set as W3 = 115 nm, L3 = 335 nm, Px = 235 nm, and Py = 335 nm. (b) Schematic diagram of the 卍-PCMI, the structure parameters are set as W4 = 50 nm, L4 = 250 nm, L5 = 125 nm, and Px = Py = 450 nm. The thickness h for both of the Ag-metal-grating and the 卍-shaped structures is 40 nm. The reflection intensities of (c), (e), (g) the G-PCMI; and (d), (f) (h) the 卍-PCMI. The refractive index ntop is increased from 1 to 4, while the refractive index nbottom keeps at 1.49.

Pagès S, Lagugné-Labarthet F, Buffeteau T, Sourisseau C 2002 Appl. Phys. B 75 541 DOI: 10.1007/s00340-002-0976-7
Wang L, Huang X, Li M, Dong J 2019 Opt. Express 27 25983 DOI: 10.1364/OE.27.025983
Turner M D, Saba M, Zhang Q, Cumming B P, Schräder-Turk G E, Gu M 2013 Nat. Photon. 7 801 DOI: 10.1038/nphoton.2013.233
Eidelshtein G, Fardian-Melamed N, Gutkin V, Basmanov D, Kotlyar A 2016 Adv. Mater. 28 4944 DOI: 10.1002/adma.v28.24
Liu Y, Zhao X 2018 Chin. Phys. B 27 117805 DOI: 10.1088/1674-1056/27/11/117805
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G V, Linden S, Wegener M 2009 Science 325 1513 DOI: 10.1126/science.1177031
Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Svirko Y 2005 Phys. Rev. Lett. 95 227401 DOI: 10.1103/PhysRevLett.95.227401
Chen W, Abeysinghe D C, Nelson R L, Zhan Q 2010 Nano Lett. 10 2075 DOI: 10.1021/nl100340w
Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026 DOI: 10.1103/PhysRevX.4.021026
Wang J, Tian H, Li S, Li L, Wang G, Gao J, Guo W, Zhou Z 2020 Opt. Lett. 45 1276 DOI: 10.1364/OL.388722
Lee S J, Lin W 2002 J. Am. Chem. Soc. 124 4554 DOI: 10.1021/ja0256257
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442 DOI: 10.1038/nmat2162
Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X 2009 Phys. Rev. Let. 102 023901 DOI: 10.1103/PhysRevLett.102.023901
Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L, Gmachl C F 2007 Nat. Mater. 6 946 DOI: 10.1038/nmat2033
Plum E, Zhou J, Dong J, Fedotov V A, Koschny T, Soukoulis C M, Zheludev N I 2009 Phys. Rev. B 79 035407 DOI: 10.1103/PhysRevB.79.035407
Zhao R, Zhou J, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 103 103602 DOI: 10.1103/PhysRevLett.103.103602
Zhao R, Koschny T, Economou E N, Soukoulis C M 2010 Phys. Rev. B 81 235126 DOI: 10.1103/PhysRevB.81.235126
Cao T, Wei C, Mao L, Li Y 2014 Sci. Rep. 4 7442 DOI: 10.1038/srep07442
Cheng Y Z, Chen F, Luo H 2020 Phys. Lett. A 384 126398 DOI: 10.1016/j.physleta.2020.126398
Tang M, Zhou X X, Luo H L, Wen S C 2012 Chin. Phys. B 21 124201 DOI: 10.1088/1674-1056/21/12/124201
Wang H, Zhang X 2011 Phys. Rev. A 83 053820 DOI: 10.1103/PhysRevA.83.053820
Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Lett. 97 167401 DOI: 10.1103/PhysRevLett.97.167401
Cheng Y Z, Yang Y L, Zhou Y J, Zhang Z, Mao X S, Gong R Z 2016 J. Mod. Opt. 63 1675 DOI: 10.1080/09500340.2016.1167976
Decker M, Zhao R, Soukoulis C M, Linden S, Wegener M 2010 Opt. Lett. 35 1593 DOI: 10.1364/OL.35.001593
Cheng Y Z, Gong R Z, Wu L 2016 Plasmonics 12 1113 DOI: 10.1007/s11468-016-0365-4
Liu D Y, Luo X Y, Liu J J, Dong J F 2013 Chin. Phys. B 22 124202 DOI: 10.1088/1674-1056/22/12/124202
Kaschke J, Gansel J K, Wegener M M 2012 Opt. Express 20 26012 DOI: 10.1364/OE.20.026012
Cui Y, Kang L, Lan S, Rodrigues S, Cai W 2014 Nano Lett. 14 1021 DOI: 10.1021/nl404572u
Rehman M U, Hua C, Lu Y 2020 Chin. Phys. B 29 057304 DOI: 10.1088/1674-1056/ab81ff
Frank B, Yin X, SchäFerling M, Zhao J, Hein S M, Braun P V, Giessen H 2013 Acs Nano 7 6321 DOI: 10.1021/nn402370x
Lesot P, Lafon O 2008 Chem. Phy. Lett. 458 219 DOI: 10.1016/j.cplett.2008.04.065
Heng H, Wang R 2016 Chin. Phys. Lett. 33 53 DOI: 10.1016/0009-2614(75)85451-0
Yang X, Li M, Hou Y D, Du J L, Gao F H 2019 Opt. Express 27 6801 DOI: 10.1364/OE.27.006801
Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82 053811 DOI: 10.1103/PhysRevA.82.053811
Menzel C, Helgert C, Rockstuhl C, Kley E, Tunnermann A, Pertsch T, Lederer F 2010 Phys. Rev. Lett. 104 253902 DOI: 10.1103/PhysRevLett.104.253902
Georgieva E 1995 J. Opt. Soc. Am. A 12 2203 DOI: 10.1364/JOSAA.12.002203
Cheng Q, Cui T J 2007 J. Opt. Soc. Am. A 23 3203 DOI: 10.1364/JOSAA.23.003203
Lu Y F, Han Y P 2019 Chin. Phys. B 28 024202 DOI: 10.1088/1674-1056/28/2/024202
Ghaffar A, Alkanhal Majeed A.S 2015 Int. J. Appl. Electrom. 47 805 DOI: 10.3233/JAE-130161
Li W, Coppens Z J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379 DOI: 10.1038/ncomms9379
[1] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[2] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[3] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[4] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[5] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
[6] Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band
Xinying Zhao(赵欣颖), Yihua Hu(胡以华), Youlin Gu(顾有林), Xi Chen(陈曦), Xinyu Wang(王新宇), Peng Wang(王鹏), Xiao Dong(董骁). Chin. Phys. B, 2019, 28(3): 034201.
[7] Damage and recovery of fiber Bragg grating under radiation environment
Shi-Zhe Wen(温世喆), Wei-Chen Xiong(熊伟晨), Li-Ping Huang(黄力平), Zhen-Rui Wang(王镇锐), Xing-Bin Zhang(张兴斌), Zhen-Hui He(何振辉). Chin. Phys. B, 2018, 27(9): 090701.
[8] High-performance lens antenna using high refractive index metamaterials
Lai-Jun Wang(王来军), Qiao-Hong Chen(陈巧红), Fa-Long Yu(余发龙), Xi Gao(高喜). Chin. Phys. B, 2018, 27(8): 087802.
[9] Multilayer graphene refractive index tuning by optical power
Lijun Li(李丽君), Yilin Liu(刘仪琳), Yinming Liu(刘荫明), Lin Xu(徐琳), Fei Yu(于飞), Tianzong Xu(徐天纵), Zhihui Shi(石志辉), Weikang Jia(贾伟康). Chin. Phys. B, 2018, 27(12): 126304.
[10] Cascaded tilted fiber Bragg grating for enhanced refractive index sensing
Biqiang Jiang(姜碧强), Zhixuan Bi(毕芷瑄), Shouheng Wang(王守恒), Teli Xi(席特立), Kaiming Zhou, Lin Zhang, Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114220.
[11] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
[12] Accuracy design of ultra-low residual reflection coatingsfor laser optics
Huasong Liu(刘华松), Xiao Yang(杨霄), Lishuan Wang(王利栓), Hongfei Jiao(焦宏飞), Yiqin Ji(季一勤), Feng Zhang(张锋), D an Liu(刘丹丹), Chenghui Jiang(姜承慧), Yugang Jiang(姜玉刚), Deying Chen(陈德应). Chin. Phys. B, 2017, 26(7): 077801.
[13] Dielectric loaded surface plasmon polariton properties of the Al2O3-Al nanostructure
Jie Yao(姚洁), Qi Wei(魏琦), Qing-Yu Ma(马青玉), Da-Jian Wu(吴大建). Chin. Phys. B, 2017, 26(5): 057302.
[14] Coherently induced grating in refractive index enhanced medium
Zhuan-Zhuan Liu(刘撰撰), Yu-Yuan Chen(陈煜远), Jia-Yu Yuan(原佳宇), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2017, 26(12): 124209.
[15] Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer
Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽). Chin. Phys. B, 2017, 26(11): 116504.
No Suggested Reading articles found!