Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104204    DOI: 10.1088/1674-1056/ab9de8

Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy

Ya-Fei Zhang(张亚飞)1,2, Yu-Tao Feng(冯玉涛)1,†, Di Fu(傅頔)1, Peng-Chong Wang(王鹏冲)1, Jian Sun(孙剑)1, and Qing-Lan Bai(白清兰)1
1 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China

Instrument drifts introduce additional phase errors into atmospheric wind measurement of Doppler asymmetric spatial heterodyne spectroscopy (DASH). Aiming at the phase sensitivity of DASH to instrument drifts, in this paper we calculate the optical path difference (OPD) and present an accurate formula of DASH interferogram. By controlling variables in computational ray-tracing simulations and laboratory experiments, it is indicated that initial phase is directly determined by incident wavenumber, OPD offset and field of view (FOV). Accordingly, it is indicated that retrieved phase of DASH is sensitive to slight structural change caused by instrument drift, which provides the proof of necessary-to-track and -correct phase errors from instrument drifts.

Keywords:  atmospheric wind measurement      Doppler asymmetric spatial heterodyne spectroscopy      optical path difference      interference phase  
Received:  07 January 2020      Revised:  30 April 2020      Published:  05 October 2020
PACS:  42.25.Hz (Interference)  
  07.60.Ly (Interferometers)  
  42.68.-w (Atmospheric and ocean optics)  
Corresponding Authors:  Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
* Project supported by the National Natural Science Foundation of China (Grant No. 41005019), the Fund from the Chinese Academy of Scieneces for West Yong Scientists (Grant No. XAB 2016A07), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JQ-931).

Cite this article: 

Ya-Fei Zhang(张亚飞), Yu-Tao Feng(冯玉涛)†, Di Fu(傅頔), Peng-Chong Wang(王鹏冲), Jian Sun(孙剑), and Qing-Lan Bai(白清兰) Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy 2020 Chin. Phys. B 29 104204

Fig. 1.  

(a) Schematic diagram of typical DASH interferometer, where L1 and L2 are collimating lenses. L3 and L4 are imaging lenses, gratings 1 and 2 are tilted by a Littrow angle θL, Δd is the asymmetric offset of two optical arms. Outgoing wavefronts have the same phase. (b) Schematic diagram of the calculation of OPD. Because wavefronts 1 and 2 have the same phase, the OPD at point X on image plane can be obtained by |BX| + |XA|.

Fig. 2.  

Schematic diagram of wavefronts movement approximation, where red and blue lines represent wavefronts and arrows denote the direction of approximated wavefronts.

Fig. 3.  

FOV effects and comparisons at [(a) and (c)] 15873 cm−1 and [(b) and (d)] 15803 cm−1. Red lines represent results calculated from Eq. (5). Black dots denote simulation results. Blue lines indicate averaged difference between calculation and simulation results. Averaged difference is obtained by averaging the absolute values of all differences.

Fig. 4.  

Phase comparisons of OPD offset effect (a) at 15873 cm−1 and (b) at 15803 cm−1. Red lines represent results calculatedfrom Eq. (5). Black triangles represent simulation results. Blue lines indicate averaged difference between calculation and simulation results.

Fig. 5.  

(a) Averaged interferogram from five recorded pictures. (b) Analysis signal generated from the selected area shown in panel (a). (c) Schematic diagram of inversion phase from analysis signal shown in panel (b). Blue points indicate the retrieved raw phase and red points reptrsent the unwrapped phase.

Fig. 6.  

Phase variations at 512nd pixel when grating on the linear stage is gradually moved.

Zhang C, Zhao B, Xiangli B, Li Y 2006 Optik 117 265 DOI: 10.1016/j.ijleo.2005.08.022
Hersom C H, Shepherd G G 1995 Appl. Opt. 34 2871 DOI: 10.1364/AO.34.002871
Shepherd G G 1996 Appl. Opt. 35 2764 DOI: 10.1364/AO.35.002764
Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2006 Atmospheric Optical Modeling, Measurement, and Simulation II September 1, 2006. San Diego, California, USA 63030T DOI: 10.1117/12.681704
Englert C R, Babcock D D, Harlander J M 2007 Appl. Opt. 46 7297 DOI: 10.1364/AO.46.007297
Englert C R, Brown C M, Bach B, Bach E, Bach K, Harlander J M, Seely J F, Marr K D, Miller I 2017 Appl. Opt. 56 2090 DOI: 10.1364/AO.56.002090
Englert C R, Harlander J M, Emmert J T, Babcock D D, Roesler F L 2010 Opt. Express 18 27416 DOI: 10.1364/OE.18.027416
Englert C R, Harlander J M, Brown C M, Marr K D, Miller I J, Stump J E, Hancock J, Peterson J Q, Kumler J, Morrow W H, Mooney T A, Ellis S, Mende S B, Harris S E, Stevens M H, Makela J J, Harding B J, Immel T J 2017 Space Sci. Rev. 212 553 DOI: 10.1007/s11214-017-0358-4
Fei X, Feng Y, Bai Q, Xie N, Li Y, Yan P, Sun J 2015 Acta Opt. Sin. 35 0422003 in Chinese DOI: 10.3788/AOS201535.0422003
Liu J, Wei D, Zhu Y, Kaufmann M, Olschewski F, Mantel K, Xu J, Riese M 2018 Appl. Opt. 57 8829 DOI: 10.1364/AO.57.008829
Perklins C 2013 Spatial heterodyne spectroscopy: modeling and interferogram processing MS Dissertation Rochester Rochester Institute of Technology
Harlander J M 1991 Spatial heterodyne spectroscopy: Interferometric performance at any wavelength without scanning Ph.D. dissertation Wisconsin The University of Wisconsin-Madison
Harlander J M, Englert C R, Marr K D, Harding B J, Chu K T 2019 Appl. Opt. 58 3613 DOI: 10.1364/AO.58.003613
Thuillier G, Gault W, Brun J F, Hersé M, Ward W, Hersom C 1998 Appl. Opt. 37 1356 DOI: 10.1364/AO.37.001356
Shepherd M, Fricke-Begemann C 2004 Ann. Geophys. 22 1513 DOI: 10.5194/angeo-22-1513-2004
[1] Doppler radial velocity detection based on Doppler asymmetric spatial heterodyne spectroscopy technique for absorption lines
Yin-Li Kuang(况银丽), Liang Fang(方亮), Xiang Peng(彭翔), Xin Cheng(程欣), Hui Zhang(张辉), En-Hai Liu(刘恩海). Chin. Phys. B, 2020, 29(2): 020701.
[2] Universal form of the power spectrum of the aero-optical aberration caused by the supersonic turbulent boundary layer
Gao Qiong, Yi Shi-He, Jiang Zong-Fu. Chin. Phys. B, 2014, 23(10): 104201.
[3] Analysing the structure of the optical path length of a supersonic mixing layer by using wavelet methods
Gao Qiong, Yi Shi-He, Jiang Zong-Fu, Zhao Yu-Xin, Xie Wen-Ke. Chin. Phys. B, 2012, 21(6): 064701.
[4] Multi-wavelength laser active coherent combination
Han Kai,Xu Xiao-Jun,Liu Ze-Jin. Chin. Phys. B, 2012, 21(5): 054205.
[5] Interference phase of mass neutrino in Reissner–Nordström–de Sitter space–time
Huang He, Wang Yong-Jiu. Chin. Phys. B, 2010, 19(9): 099702.
[6] A novel polarization interferometer for measuring upper atmospheric winds
Mu Ting-Kui, Zhang Chun-Min. Chin. Phys. B, 2010, 19(6): 060702.
[7] Effects of optical axis direction on optical path difference and lateral displacement of Savart polariscope
Zhang Chun-Min, Ren Wen-Yi, Mu Ting-Kui. Chin. Phys. B, 2010, 19(2): 024202.
[8] Interference phase of mass neutrino in CM space--time
Chen Xia, Wang Yong-Jiu. Chin. Phys. B, 2009, 18(4): 1707-1710.
[9] Neutrino oscillation interference phase in Kerr space--time
Ren Jun, Jia Meng-Wen, Yuan Chang-Qing. Chin. Phys. B, 2009, 18(12): 5575-5582.
[10] Mass neutrino oscillations in Robertson--Walker space--time
Li Ze-Jun, Huang Xiu-Ju, Wang Yong-Jiu. Chin. Phys. B, 2006, 15(1): 229-231.
[11] Mass neutrino oscillations in Reissner-Nordstrom space-time
Huang Xiu-Ju, Wang Yong-Jiu. Chin. Phys. B, 2004, 13(9): 1588-1590.
No Suggested Reading articles found!